
ar
X

iv
:2

11
0.

15
40

7v
1 

 [
m

at
h.

G
T

] 
 2

8 
O

ct
 2

02
1

PROJECTIVE STRUCTURES WITH (QUASI-)HITCHIN

HOLONOMY

DANIELE ALESSANDRINI, COLIN DAVALO, AND QIONGLING LI

Abstract. In this paper we investigate the properties of the real and complex pro-
jective structures associated to Hitchin and quasi-Hitchin representations that were
originally constructed using Guichard-Wienhard’s theory of domains of discontinu-
ity. We determine the topology of the underlying manifolds and we prove that some
of these geometric structures are fibered in a special standard way. In order to
prove these results, we give two new ways to construct these geometric structures:
we construct them using gauge theory, flat bundles and Higgs bundles, and we also
give a new geometric way to construct them.
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1. Introduction

1.1. Higher Teichmüller theory. Higher Teichmüller theory is a branch of geometry
studying the analogs of Teichmüller space for higher rank Lie groups. For an intro-
duction see Wienhard’s survey paper [31]. The starting point is the observation that
Teichmüller theory is deeply related with the rank one groups PSL(2,R) = Isom+(H2)
and PSL(2,C) = Isom+(H3). For a closed orientable surface S of genus g ≥ 2, Te-
ichmüller space can be identified with a connected component of the character variety
X(π1(S), PSL(2,R)), whose elements are discrete and faithful representations called
Fuchsian representations. Similarly, the quasi-Fuchsian space, i.e. the space of quasi-
Fuchsian representations, is an open subset of X(π1(S), PSL(2,C)).

The theory can be extended by replacing PSL(2,R) and PSL(2,C) by higher rank
Lie groups, such as for example PSL(m,R) and PSL(m,C), groups of rank m − 1.
It is possible to find copies of Teichmüller space inside X(π1(S), PSL(m,R)) and
X(π1(S), PSL(m,C)), this is called the Fuchsian locus. We can then deform the
Fuchsian locus to obtain interesting open subsets of these character varieties.

Hitchin [20] proved that the Fuchsian locus is contained in connected components of

X(π1(S), PSL(m,R)) that are homeomorphic to R
(m2−1)(2g−2). They are now called

the Hitchin components, and their elements are the Hitchin representations. There are
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two such components when m is even and one component when m is odd. Labourie
[26] proved that they are Anosov representations and that they share many properties
with the Fuchsian representations. Hitchin components are the first example of higher
Teichmüller spaces (see [31]).

Similarly, we can find connected open subsets of X(π1(S), PSL(m,C)) that contain
the Fuchsian locus and are the higher rank analog of the quasi-Fuchsian space. We
call these subsets the quasi-Hitchin spaces, and their elements the quasi-Hitchin rep-
resentations. For a definition, see Section 2, where we will mainly cover the case of
even m.

1.2. Geometric structures. Teichmüller space and the quasi-Fuchsian space were
introduced because they serve as deformation spaces of geometric structures on the
surface: Teichmüller space parametrizes the hyperbolic structures on S, and the quasi-
Fuchsian space parametrizes the quasi-Fuchsian complex projective structures on S.
The initial motivation for this work comes from the following question:

Question 1.1. Can we see the Hitchin components and the quasi-Hitchin spaces as
deformation spaces of geometric structures on a manifold?

This question has a satisfying answer in two cases: when m = 3, the Hitchin
component of PSL(3,R) is the deformation space of convex RP

2-structures on S,
see Choi-Goldman [10]; when m = 4, the Hitchin component of PSL(4,R) is the
deformation space of convex foliated RP

3-structures on the unit tangent bundle of S,
see Guichard-Wienhard [16].

When m > 4, there is no complete answer yet. This is a good moment to remark
that the theory is very different for odd or even m. For odd m, a possible way to
approach this question is given in Danciger-Guéritaud-Kassel [12] and another one in
Stecker-Treib [29]. For the rest of this paper, we will assume that m = 2n is even:
this case is easier to understand because of the existence of half-dimensional spaces in
R
2n.
In this case, a partial answer is given by Guichard-Wienhard [17]. There, they

introduced the theory of domains of discontinuity for Anosov representations, and
using this tool they proved that every Hitchin representation in PSL(2n,R) is the
holonomy of an RP

2n−1-structure on a closed manifold MR that does not depend on
the representation. In this way, they show that a Hitchin component is homeomorphic
to a connected component of the deformation space of RP2n−1-structures onMR. This
result has a twofold interest: on the one hand, they can describe the topology of a
connected component of the aforementioned deformation space; on the other hand,
they can see the Hitchin component as a deformation space of geometric structures,
making it even more similar to Teichmüller space.

Similarly, they proved that every quasi-Hitchin representation in PSL(2n,C) is the
holonomy of a CP

2n−1-structure on a closed manifoldMC that does not depend on the
representation. This time the deformation space of CP2n−1-structures onMC contains
an open subset that is a covering of the quasi-Hitchin space. In this way they compute
the dimension of an open subset of the aforementioned deformation space. Moreover,
there is hope in the future to describe the topology of the quasi-Hitchin space: for
example the topology of the quasi-Fuchsian space is well understood. Again, they can
see the quasi-Hitchin space as a parameter space of geometric structures, making it
even more similar to the quasi-Fuchsian space.

The theorem in [17] gets close to answer Question 1.1, but it still leaves two questions
open: we will discuss them as Quentions 1.2 and 1.4.

Question 1.2. What are the manifolds MR and MC?

The method used in [17] does not give any information about the topology of the
manifoldsMR andMC, because they are constructed in an indirect way. We only know
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it explicitly in the case of MR for n = 2: it has 2 connected components, one of whom
is the unit tangent bundle of S [16]. Guichard-Wienhard [17] announced that MR is
always a fiber bundle over S, with fiber a quotient of a Stiefel manifold, this result
will appear in [18]. The topology of the manifold MC was studied by Dumas-Sanders
[13]. They computed the homology ring of MC (and of other related manifolds) and
this result inspired the following conjecture:

Conjecture 1.3 (Dumas-Sanders [13, Conj. 1.1]). The manifold MC (and other
manifolds obtained by the Kapovich-Leeb-Porti construction [22] from a quasi-Hitchin
representation in a complex semisimple group) is homeomorphic to a continuous fiber
bundle over S.

In this paper, we will determine the topology ofMR andMC, see Theorem 1.5. This
will answer Question 1.2 and prove Conjecture 1.3 in the special case of MC, adding
more evidence for the general conjecture.

Question 1.4. How can we characterize the geometric structures corresponding to
Hitchin or quasi-Hitchin representations?

Here the point is that the map from the Hitchin component or quasi-Hitchin space
to the deformation space of geometric structures is usually not onto. The question asks
for a characterization of the image. In the cases where the problem is well understood,
geometric characterizations exist: for PSL(2,R) the image is all hyperbolic structures
on S, for PSL(2,C) the image is all the quasi-Fuchsian CP

1-structures on S, for
PSL(3,R) the image is all the convex RP

2-structures on S [10], for PSL(4,R), the
image is all the convex foliated RP

3-structures on T 1S [16].
In his thesis, Baraglia [6] showed that Hitchin representations in PSp(4,R) corre-

spond to convex-foliated contact projective structures on the unite tangent bundle of
the surface, and he proved that for such structures the image by the developing map
of each fiber is a projective line. Collier, Tholozan and Toulisse [11] reinterpreted this
in light of the isomorphism PSp(4,R) ≃ SO0(2, 3), that transform contact projective
structures into photon structures, generalized Baraglia’s result to all maximal repre-
sentations, showing that also in this case the image by the developing map of each
fiber is a special circle, and proved the converse result: all photon structures that are
fibered in the same special way have holonomy in the space of maximal representations.
They also have a similar result for maximal representations in SO0(2, n), n ≥ 3.

Here we don’t have a complete answer to Question 1.4 for the Hitchin components,
but we prove that if a Hitchin or quasi-Hitchin representation is close enough to the
Fuchsian locus, it is the holonomy of a fibered projective structure, i.e. a projective
structure on a bundle over the surface such that the image by the developing map of
each fiber is a standard embedding of a Stiefel manifold, see Theorem 1.7.

A preliminary version of the results obtained here was announced in the survey
paper by Alessandrini [1].

1.3. Our results. We will first discuss our answer to Question 1.2. We fix an even
m = 2n, and we denote by K the field R or C. We denote by S a closed oriented surface
of genus g. Using their theory of domains of discontinuity, Guichard-Wienhard [17]
constructed manifolds MK, such that every Hitchin representation in PSL(2n,R) is
the holonomy of an RP

2n−1-structure on MR, and every quasi-Hitchin representation
is the holonomy of a CP

2n−1-structure on MC, see Section 4 for more details.
In order to describe the topology of MK, we consider the space FK, defined in the

following way. The space FR = T 1
RP

n−1 is the unit tangent bundle of the projective
space. It carries a natural SO(2)-action, the geodesic flow for the round metric on
RP

n−1. For the space FC, we consider the sphere S
2n−1. It carries a U(1)-action

called the Hopf action, whose quotient is CPn−1. The space FC is the quotient FC =
(T 1

S
2n−1)/U(1). The space FC also carries an SO(2)-action: the geodesic flow of the
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round metric on S
2n−1 commutes with the Hopf action, hence it descends to an SO(2)-

action on FC that we will still call the geodesic flow. For more details about FK and
the relevant actions, see Section 5.1.

Theorem 1.5. For n ≥ 3 and K = R, or n ≥ 2 and K = C, the manifold MK is
homeomorphic to a fiber bundle over the surface S with fiber FK, and structure group
SO(2) acting on FK via the geodesic flow. This bundle has Euler class 2g − 2, and
this invariant completely characterizes the bundle.

In the text, this theorem is proved in Theorems 7.1 and 8.7 and Proposition 9.3.
This result answers Question 1.2 and proves Conjecture 1.3 in the special case of MC.
We add more details on the topology of MK in Section 10, for example, we prove
that MR is a circle bundle over S × Gr+(2,Rn), where Gr+(2,Rn) is the oriented
Grassmannian of 2-planes in R

n (Proposition 10.3). A similar description for MC is
also given there, but it is more complicated to state.

In order to prove the theorem, we give a new construction of projective structures
whose holonomy is close enough to a Fuchsian representation. In this new construction,
we start with an explicit manifold that is defined as a suitable fiber bundle p : UK → S
over the surface S. We prove the following:

Theorem 1.6. Let K = R or C, and n ≥ 2. Let ρ be a Fuchsian representation of
π1(S) into PSL(2n,K). There exists a projective structure on UK whose holonomy is
ρ ◦ p∗.

The projective structure constructed on UK is projectively isomorphic to the one
constructed by Guichard-Wienhard on MK. In particular, the fibre bundle UK is dif-
feomorphic to MK.

In the text, this is proved in Theorems 6.5, 7.1, 8.7. This theorem is the key
to the proof of Theorem 1.5. These projective structures are constructed by taking
a transverse section of the flat bundle associated to ρ. We use Higgs bundles for
Fuchsian representations to prove the transversality of the section. If we consider a
representation ρ that is close enough to a Fuchsian representation, the section will
remain transverse, and hence one can obtain also a geometric structure associated to
ρ.

In this paper, we cannot give a complete answer to Question 1.4, but we prove a
result in that direction. We prove that, for the structure constructed with our method,
the developing image of the fibers of the bundle agrees with a standard model. The
following theorem is proved in Proposition 6.6 and Theorem 6.7.

Theorem 1.7. There exists a neighborhood OK of Fuchsian representations into
PSL(2n,K) inside the space of Hitchin representations if K = R and quasi-Hitchin
representations if K = C and there exists a map GK that associates to any representa-
tion ρ ∈ OK a projective structure on UK whose holonomy is ρ ◦ p∗.

The image of the fibers p−1(x) of UK at a point x ∈ S by the developing map
associated to the projective structure is a standard projective embedding of the Stiefel
manifold (see Definition 5.1).

Now consider the case when ρ is a Fuchsian representation in PSL(2,R), diagonally
embedded into PSL(2n,K). There also exists a fiber bundle p : WK → S over S with
a projective structure whose holonomy is ρ ◦ p∗. The developing image of the fibers
of these fibrations are also standard projective embeddings of the Stiefel manifold. In
Proposition 9.3 we compare these bundles with the bundles UK, and show that they
are often isomorphic.

Proposition 1.8. As topological bundles over S, we have the following isomorphisms.

(1) For n ≥ 3, UR
∼=WR;
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(2) For n ≥ 2, UC
∼=WC;

In the main body of the paper, we will work not only with projective structures
but also with spherical structures associated with Hitchin and quasi-Hitchin represen-
tations, see Section 3 for more details. For the spherical structures, we have results
very similar to the results about the projective structures mentioned here.

1.4. Our methods. In order to prove our results, we give an independent construc-
tion of the projective structures associated with a Hitchin or quasi-Hitchin represen-
tation. Our method works for representations that are close enough to the Fuchsian
locus.

We are using gauge theory: given a representation, we cosider the associated flat
vector bundle on the surface EK and its projectivization P(EK). We construct the
manifold UK as a subbundle of P(EK). The pull back of P(EK) to UK is a bundle
on UK with a canonical section. This section induces an equivariant map from the
universal covering of UK to the fiberKP

2n−1. In order for this equivariant map to be the
developing map of a projective structure, we have to check a transversality condition
of the canonical section with reference to the flat connection. This construction is
called the graph of a projective structure on UK, see Section 3.

When the representation is Fuchsian, we use Higgs bundles to describe the bundle
EK and its flat connection. These objects are very concrete in this case, and we can
use this description to define the subbundle UK and to prove that the canonical section
is transverse, see Section 6.

The use of gauge theory let us extend the construction of these geometric structures
on a fiber bundle over S for representations that are close enough to a Fuchsian
representation, using compactness and a transversality argument. However it is not
clear whether our method can allow to define geometric structures for every Hitchin
representation, as the transversality of the canonical section is difficult to prove in
general.

In Sections 7 and 8, we show that the the geometric structures we constructed
are isomorphic to the ones constructed by Guichard and Wienhard. In particular the
topology of the manifold on which these structures are defined are the same, and hence
we can answer Question 1.2. In order to do this, we study the image of the developing
map, and we prove that this image is contained in the domain of discontinuity defined
by Guichard andWienhard. A topological argument will then prove that the projective
structures are isomorphic.

In Section 8 we give a more geometric point of view on our construction of geometric
structures for the Fuchsian locus. We give a way to construct the same projective
structures that does not use Higgs bundles. This construction depends on the choice
of a parameter λ, and we choose λ in a way that is related to the harmonic metric
associated to the Higgs bundle, and will yield a projective structure with the same
developing map as the one constructed with the Higgs bundle method.

Finally, in Section 9, we compare the topology of UK with the topology of the man-
ifold WK associated to a diagonal representation. We use the second Stiefel-Whitney
class to show that UK and WK, are isomorphic as SO(n)×SO(2)-principal bundles in
many cases.

1.5. Organization of the paper. In Section 2 we present the definition of Hitchin
and quasi-Hitchin representations, and their Anosov properties.

In Section 3 we present the definition of geometries in the sense of Klein and
Thurston and their associated structures on manifolds. We then recall two ways
of constructing geometric structures on manifolds: the construction of a domain of
discontinuity, and the construction of the graph of a geometric structure. We also
prove a version of Thurston’s holonomy principle.
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In Section 4 we recall some results of Guichard and Wienhard [17]: the construction
of a domain of discontinuity for Anosov representations, its explicit description when
the representation is Fuchsian, and finally the correspondence they obtain between
some geometric structures on some manifolds MK for K = R or C and Hitchin or
quasi-Hitchin representations.

In Section 5 we give a description of Stiefel manifolds, which will arise as the fibers
of the manifolds UK on which we will construct some geometric structures.

In Section 6 we construct geometric structures on some fiber bundles UK over the
surface S. For this we recall the description of Higgs bundles associated to a Fuchsian
representation. We construct a section of the flat bundles P(EC) and S(EC) and show
that this section is transverse. Finally we extend this construction on a neighborhood
of the space of Fuchsian representations.

In Section 7 we compare our construction with the construction of Guichard and
Wienhard, and prove using Lemma 8.8 that the two constructions induce the same
geometric structure, on the same manifold.

In Section 8 we give a more geometric way to construct these geometric structures
associated to Fuchsian representations. In this section we prove Lemma 8.8.

In Section 9 we describe the geometric structures associated to diagonal representa-
tions constructed by Guichard–Wienhard, and we compare the topology of the under-
lying manifolds associated to Fuchsian representations and diagonal representations.

In Section 10 we give more details on the topology of the manifolds MK.

1.6. Acknowledgements. The authors thank David Dumas, Olivier Guichard, An-
drew Sanders and Anna Wienhard for enlightening conversations. C.D thanks in
particular Olivier Guichard for the supervision of his master thesis, during which he
worked on this problem. The authors acknowledge support from U.S. National Sci-
ence Foundation grants DMS 1107452, 1107263, 1107367 “RNMS: GEometric struc-
tures And Representation varieties” (the GEAR Network). D.A. was supported by
the DFG grant AL 1978/1-1 within the Priority Programme SPP 2026 “Geometry at
Infinity”. C.D acknowledges support from the ENS, Paris and was partially funded
through the DFG Emmy Noether project 427903332 of B. Pozzetti. Q.L. acknowledges
support from Nankai Zhide Foundation.

2. (Quasi-)Hitchin representations

In this paper, S will denote a closed orientable surface of genus g ≥ 2. We will
denote by X(π1(S), G) the character variety of a reductive Lie group G, i.e. the
parameter space Hom∗(π1(S), G)/G of conjugacy classes of reductive representations
of π1(S) into G.

Here we will consider representations ρ : π1(S)→PSL(2n,K), with K = R or C. We
are mainly interested in Anosov representations, a special type of representations intro-
duced by Labourie [26], by Burger-Iozzi-Labourie-Wienhard [7], and, in full generality,
by Guichard-Wienhard [17].

The notion of Anosov representation depends on the choice of a parabolic subgroup.
Let Vn ⊂ K

2n be a fixed half-dimensional vector subspace and [Vn] ⊂ KP
2n−1 be the

corresponding projective subspace, we consider the parabolic subgroup

Qn = {g ∈ PSL(2n,K) | g([Vn]) ⊂ [Vn]} .
We will not recall here the complete definition of Qn-Anosov representations, see
[17, 15, 22, 23]. We will only recall that every Qn-Anosov representation ρ is discrete
and faithful, and that it admits a continuous ρ-equivariant map:

(1) ξ : ∂∞π1(S) → Grn(K
2n) .
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We will denote by Anosov2n(S,K) ⊂ X(π1(S), PSL(2n,K)) the open subset of the
character variety consisting of Qn-Anosov representations. The spaces Anosov2n(S,K)
are important for their geometric and dynamical properties.

For example, when n = 1, the spaces Anosov2(S,K) are fundamental in Teichmüller
theory and hyperbolic geometry. The space Anosov2(S,R) = Fuch2(S) is the space of
discrete and faithful representations in PSL(2,R), also called Fuchsian representations.
This space is the union of two connected components of X(π1(S), PSL(2,R)), we
call them the Fuchsian components, and each of them is a copy of Teichmüller space.
Similarly, the space Anosov2(S,C) = QFuch2(S) is the quasi-Fuchsian space, the space
of the representations in PSL(2,C) whose action on CP

1 is topologically conjugate to
the action of a Fuchsian representation. These representations are called the quasi-
Fuchsian representations.

When n > 1, we can identify some connected components of Anosov2n(S,K) that
are the higher rank analogs of the Fuchsian components and the quasi-Fuchsian space.
Let ι : PSL(2,R)→PSL(2n,R) be the irreducible representation, unique up to con-
jugation. For every Fuchsian representation ρ0 : π1(S)→PSL(2,R), the composition
ι ◦ ρ0 : π1(S)→PSL(2n,R) is called a Fuchsian representation in PSL(2n,R). Their
space, denoted by Fuch2n(S) and called the Fuchsian locus, is the union of two copies
of Teichmüller space inside X(π1(S), PSL(2n,R)). The two connected components of
X(π1(S), PSL(2n,R)) containing Fuch2n(S) are called the Hitchin components, and
their union is denoted by Hit2n(S). Its elements are called the Hitchin representa-
tions. The Hitchin components were introduced by Hitchin [20], who proved that each

component is homeomorphic to R
(4n2−1)(2g−2). Labourie [26] proved that all Hitchin

representations are Qn-Anosov, hence

Hit2n(S) ⊂ Anosov2n(S,R) .

This result implies that every Hitchin representation is discrete and faithful, in partic-
ular every component of Hit2n(S) is a higher Teichmüller space, see Wienhard’s survey
paper [31].

When Hit2n(S) is mapped to X(π1(S), PSL(2n,C)) using the inclusion of groups
PSL(2n,R)→PSL(2n,C), the image is connected, because the two components are
conjugate by an element of PSL(2n,C). We denote by QHit2n(S), the quasi-Hitchin
space, the connected component of the space of irreducible elements in Anosov2n(S,C)
that contains the image of Hit2n(S). This is an open subset of X(π1(S), PSL(2n,C))
whose elements will be called Qn-quasi-Hitchin representations in PSL(2n,C), or
shortly just quasi-Hitchin representations. The idea behind this name is that they are
the higher rank analogs of quasi-Fuchsian representations. The quasi-Hitchin space
was studied (with a different name and in greater generality) by Dumas-Sanders [13].
A similar space, with the same name is also studied in a paper in preparation by
Alessandrini-Maloni-Wienhard [3].

3. Geometric structures

One of the motivations for this work is to understand parameter spaces of geometric
structures on a fixed manifold. A geometric structure is a way to model a manifold
locally on a homogeneous geometry, in the sense of Klein and Thurston (see [30, 1]).

3.1. Geometries. More precisely, a geometry is a pair (X,G), where X is a manifold
and G is a Lie group acting on X transitively and effectively. We now discuss the four
geometries we will consider in this paper.

Let K = R or C. Given a vector space Km, we will denote the associated projective
space by P(Km) = KP

m−1 and the associated sphere by

S(Km) = (Km \ {0})/ ∼ ,
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where the equivalence relation is

v ∼ w ⇔ ∃r ∈ R>0 : v = rw .

Here we prefer to see the spheres as quotients instead of seeing them as subsets of
K
m. In this way it is clear that the group SL(m,K) acts naturally on S(Km). When

we don’t need to consider the group actions, we will also identify the spheres with
subsets of Km consisting of vectors of unit norm with reference to a standard scalar
or Hermitian product.

We denote the natural SL(m,K)-equivariant projections by

K
m \ {0} −→ S(Km) −→ KP

m−1

v 7−→ [v]S 7−→ [v]P .

Note that for K = R, S(Rm) = S
m−1, and the projection S(Rm)→RP

m−1 is 2 : 1,
the universal covering of RPm−1. When K = C, S(Cm) = S

2m−1, and the projection
S(Cm)→CP

m−1 is a circle bundle, the Hopf fibration.
We will consider the following geometries, for K = R or C:

• the (real or complex) projective geometry : KP
2n−1 := (KP

2n−1, PSL(2n,K)).
• the (real or complex) spherical geometry : S(K2n) := (S(K2n), SL(2n,K)).

The two spherical geometries are closely related to the real projective geometry. The
SL(2n,R)-equivariant projection S(R2n)→RP

2n−1 shows that the geometry S(R2n) is
locally isomorphic to RP

2n−1. The group SL(2n,C) can be identified with a subgroup
of SL(4n,R) and the identity map of S(C2n)→S(R4n) is equivariant: we can hence say
that S(C2n) is a subgeometry of S(R4n).

3.2. Structures on manifolds. Now we will describe how to use geometries to define
geometric structures on manifolds. Let M be a fixed closed manifold having the same
dimension as X. An (X,G)-structure onM is an atlas onM with charts taking values
in X, whose transition functions are locally restrictions of elements of G.

An (X,G)-structure onM determines a developing pair (h,D), where h : π1(M)→G

is a representation called the holonomy representation and D : M̃ → X is an h-
equivariant local diffeomorphism called the developing map. The developing pair is
well defined up to a G-action, see [1] for details. Vice versa, the developing map
determines the (X,G)-structure.

We denote by D(X,G)(M) the deformation space of all (X,G)-structures on M , up
to the equivalence relation of being isomorphic with an isomorphism that is isotopic
to the identity. The holonomy representation induces a map called the holonomy map

hol : D(X,G)(M) → Hom(π1(M), G)/G ,

that associates a geometric structure to the conjugacy class of its holonomy repre-
sentation. This map is always open and it has discrete fibers (see Goldman [14]).
Sometimes it fails to be a local homeomorphism, see the counterexamples in Kapovich
[21] and Baues [5], where branching appears. We will now show that, in a special
case that includes all the geometric structures associated to Hitchin and quasi-Hitchin
representations, the map hol is a local homeomorphism.

Lemma 3.1. Let K = R or C, and let G = SL(m,K) or PSL(m,K). Consider the
open subset Homa.i.(π1(M), G) consisting of the absolutely irreducible representations
(i.e. the representations that are irreducible over C), and the corresponding open subset
of the deformation space

D a.i.
(X,G)(M) = hol−1(Homa.i.(π1(M), G)/G) .

Then the restricted map

hol|a.i. : D a.i.
(X,G)(M) → Homa.i.(π1(M), G)/G



PROJECTIVE STRUCTURES WITH (QUASI-)HITCHIN HOLONOMY 9

is a local homeomorphism.

Proof. A more general statement is given, without proof, by Goldman [14]. The
proof makes use of Thurston’s holonomy principle, see Baues [5, Thm. 3.15] for
the statement and Canary-Epstein-Green [9, Sec. 1.7] for the proof of the holonomy
principle. Notice that an absolutely irreducible representation has a closed orbit under
conjugation. Moreover it has trivial centralizer by Schur’s Lemma, in particular it is
of principal orbit type under conjugation. As discussed in Kapovich [21, Sec. 5], this
implies the lemma. �

The holonomy map gives a link between the deformation spaces of geometric struc-
tures and representations. In particular, the lemma says that we can often describe
the local geometry of the deformation space using representations. In some special
cases, it is possible to construct some interesting sections of the holonomy map over
special open subsets of its image.

In this paper, we will consider two different methods for producing (X,G)-structures
on manifolds. The first is the method of domains of discontinuity: consider a discrete
subgroup Γ < G, and assume that there exists an open subset Ω ⊂ X such that Γ
preserves Ω and acts on Ω freely and properly discontinuously. In this case, Ω is called
a domain of discontinuity for Γ. Then M := Ω/Γ is a manifold, and it inherits an
(X,G) structure from Ω. In this case, the holonomy representation is a surjective

homomorphism h : π1(M)→Γ, and the developing map is a covering D : M̃→Ω.
Notice that, in this way, the manifoldM is constructed as a quotient, and its topology
is not always easy to determine. See Section 4 for an account of how this method was
applied to Hitchin and quasi-Hitchin representations. The second method is described
in the next subsection.

3.3. Graph of geometric structures. We will now describe the graph of a geometric
structure. This is a way to encode the developing pair (h,D) of a geometric structure
using the theory of bundles, see the survey paper [1] for more details.

Given a geometry (X,G) and a manifold M , there is a natural bijection between
conjugacy classes of representations of π1(M) in G and gauge equivalence classes of
flat structures on bundles over M with fiber X and structure group G. Under this

bijection, an equivariant map M̃→X corresponds to a section of the bundle. Assuming
that dim(X) = dim(M), a section of a flat bundle on M is said to be transverse if the
corresponding equivariant map is a local diffeomorphism. From this, we can see that
giving an (X,G)-structure on M is equivalent to giving a flat bundle over M with
fiber X and structure group G together with a transverse section.

We now describe how this point of view becomes more explicit in the case of the
spherical and projective geometries we are discussing in this paper. For the spherical
geometries, the holonomy takes vaues in G = SL(2n,K). For the projective geometries,
the holonomy takes vaues in G = PSL(2n,K), but the special projective structures
we will consider have the extra property that their holonomy lifts to SL(2n,K). In
both cases, a bundle with structure group G is described by a vector bundle on M ,
and the flat structure is described by a flat connection on the vector bundle.

Now let’s fix a representation ρ : π1(M)→SL(2n,K), and denote by (E,∇) the
corresponding vector bundle over M and its flat connection. For every point x ∈ M ,
we denote by Ex the fiber of E over x. We denote by S(E) the associated spherical
bundle and by P(E) the associated projective bundle. A section s of E determines
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sections [s]S of S(E) and [s]P of P(E). These sections determine ρ-equivariant maps

Ds :M̃ → K
2n ,

D[s]S :M̃ → S(K2n) ,

D[s]P :M̃ → KP
2n−1 .

Lemma 3.2. The map Ds is an immersion if and only if for every x ∈M and every
v ∈ TxM , ∇vs 6= 0.

The map D[s]S is an immersion if and only if for every x ∈ M and v ∈ TxM , the
derivative ∇vs is non-vanishing when projected to the quotient Ex/ 〈sx〉R, where 〈sx〉R
is the real span of sx.

The map D[s]P is an immersion if and only if for every x ∈ M and v ∈ TxM , the
derivative ∇vs is non-vanishing when projected to the quotient Ex/ 〈sx〉, , where 〈sx〉
is the span of sx.

Proof. Let x ∈M and v ∈ TxM . Let γ be a differentiable curve inM with initial point
x = γ(0) and initial tangent vector v = γ′(0). Let P (γ)0t : Eγ(t) → Eγ(0) be the parallel

transport operator of ∇. We let M̃ be the universal covering space ofM corresponding

to x ∈M : a point of M̃ is a relative homotopy class of paths γ : [0, 1] →M such that
γ(0) = x and the projection to M is the evaluation map γ 7→ γ(1).

The map Ds is given by Ds([γ]) = P (γ)01sγ(1) ∈ Ex ≃ K
2n. The path γ lifts to a

path γ̃ : [0, 1] ∋ t 7→ [γ|[0,t]] ∈ M̃ based at the constant path [x] ∈ M̃ . The relation
between the parallel transport operator and the connection is

∇vs = lim
h→0

P (γ)0hsγ(h) − sγ(0)

h
=

d

dt
P (γ)0t sγ(t)

∣∣∣∣
t=0

=
d

dt
Ds(γ̃(t))

∣∣∣∣
t=0

= (Ds)∗(ṽ),

where ṽ is the tangent vector of the lift path γ̃ in M̃ at the constant path [x]. Therefore,

we have the developing map Ds : M̃ → K
2n is an immersion at x if and only if ∇vs 6= 0

for any tangent vector v of M at x.
The statements about D[s]S and D[s]P now follow because these maps are the com-

position of Ds with the projection from K
2n to S(K2n) and KP

2n−1 respectively. �

4. Domains of discontinuity

4.1. Construction of the domains of discontinuity. Let K = R or C. Given
ρ ∈ Anosov2n(S,K), Guichard and Wienhard [17] used the ρ-equivariant curve ξ from
(1) to construct a domain ΩK ⊂ P(K2n) in the following way. They define the subset

KK =
⋃

t∈∂∞π1(S)

[ξ(t)]P ⊂ P(K2n),

where [ξ(t)]P is the projective n − 1-plane corresponding to the linear n-plane ξ(t).
The set KK is a ρ-invariant compact subset of P(K2n), so its complement

ΩK = P(K2n) \KK

is a ρ-invariant open subset. Guichard-Wienhard [17] prove that the action of the
image group ρ(π1(S)) on ΩK is properly discontinuous, free and co-compact, so the
quotient is a closed manifold:

MK = ρ(π1(S)) \ΩK .

Lemma 4.1. If ρ ∈ Hit2n(S), or ρ ∈ QHit2n(S), then ρ admits a lift

ρ̄ : π1(S) → SL(2n,K) .
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Proof. The irreducible representation ι : PSL(2,R) → PSL(2n,K) admits a lift
to a representation ῑ : SL(2,R) → SL(2n,K). Every Fuchsian representation ρ0 :
π1(S)→PSL(2,R) admits a lift ρ̄0 : π1(S)→SL(2,R), hence every Fuchsian represen-
tation ι ◦ ρ0 in PSL(2n,R) admits a lift ῑ ◦ ρ̄0.

Now we can conclude that every representation in Hit2n(S) or QHit2n(S) admits a
lift, because the existence of a lift is a topological property, hence it only depends on
the connected component of the character variety where the representation lies. �

Assume now that the Qn-Anosov representation ρ admits a lift ρ̄ : π1(S) →
SL(2n,K). In this case, it is possible to consider the action of SL(2n,K) and ρ̄(π1(S))
on the spheres S(K2n). We denote by SKK and SΩK the inverse image of KK and ΩK

by the projections. The action of ρ̄(π1(S)) on SΩK is again properly discontinuous,
free and co-compact, so the quotient is a closed manifold:

SMK = ρ̄(π1(S)) \ SΩK .

For K = R, SMR is a 2 : 1 covering of MR, while for K = C, SMC is a circle bundle
over MC.

4.2. The Fuchsian case. The construction presented in Section 4.1 becomes more
explicit in the special case when ρ = ι ◦ρ0 is a Fuchsian representation in PSL(2n,R).
There is an explicit model of the representations ι and ῑ given by an action on homo-
geneous polynomials.

The standard action of SL(2,R) on K
2 induces an action on the algebra K[X,Y ] of

polynomials in two variables, given by

(2) g · P (X,Y ) = P (aX + bY, cX + dY ) ,

where P ∈ K
(2n−1)[X,Y ] and g ∈ SL(2,R) with

g−1 =

(
a b
c d

)
.

This formula defines an SL(2,R)-action on K[X,Y ] that leaves invariant the subspaces
of homogeneous polynomials of every degree. We consider the vector subspace

VK := K
(2n−1)[X,Y ] ≃ K

2n

of homogeneous polynomials of odd degree 2n − 1 in two variables.
The action (2) gives a representation ǫ : SL(2,R)→SL(2n,K). Then we can define

a representation ῑ : SL(2,R) → SL(2n,K) taking g to ǫ((g−1)t) and an induced
projective representation ι : PSL(2,R) → PSL(2n,K). These representations are
irreducible, hence, by uniqueness up to conjugation, they are a model of the irreducible
representation. There is a natural ι-equivariant curve v : RP1→Grn(K

(2n−1)[X,Y ])
defined in the following way: for [a : b] ∈ RP

1, we will define v([a : b]) as the linear
subspace

v([a : b]) := { P ∈ K
(2n−1)[X,Y ] | (aX + bY )n|P } .

This is the n-dimensional linear subspace consisting of all polynomials containing the
factor (aX + bY ) with multiplicity at least n.

Let g ∈ SL(2,R) be a hyperbolic element, and let [a, b] and [c, d] be its repelling
and attracting fixed points in RP

1. Then ι(g) is also diagonalisable, with distinct real
eigenvalues. A basis of eigenvectors is given by the polynomials (aX + bY )k(cX +

dY )2n−1−k, for 0 ≤ k < 2n. When g acts on Grn(K
(2n−1)[X,Y ]), it has unique

attracting and repelling fixed points at v([a : b]) and v([c : d]).
Let ρ = ι ◦ ρ0 be a Fuchsian representation in PSL(2n,R), where ρ0 is a Fuch-

sian representation. The representation ρ0 is Anosov, hence it admits a continous
equivariant map ξ0 : ∂∞π1(S) → RP

1. The map ξ0 induces the ρ-equivariant map
ξ = v ◦ ξ0.



12 DANIELE ALESSANDRINI, COLIN DAVALO, AND QIONGLING LI

When we apply the construction of Section 4.1 to a Fuchsian representation in
PSL(2n,R), we see that the image of the boundary map ξ associated to ρ does not
depend on ρ0, hence also the induced sets KK, SKK, ΩK and SΩK don’t depend on ρ0.
Explicitly, KK and SKK consist of all the projective or spherical classes of polynomials
having a root with multiplicity at least n, and ΩK and SΩK consist of all the projective
or spherical classes of polynomials all of whose roots have multiplicity smaller then n.

4.3. Domains of discontinuity and geometric structures. The ρ-equivariant
curve ξ : ∂∞π1(S)→Grn(K

2n) varies continuously with the representation ρ (see [17]),
so do the sets KK, SKK,ΩK and SΩK. Since the group action on ΩK and SΩK is co-
compact, this implies that the topology ofMK and SMK is constant on every connected
component of Anosov2n(S,K) (see [17, Thm. 9.12]). In the special case of Hitchin or
quasi-Hitchin representations, these results give rise to the following statement:

Theorem 4.2 (Guichard-Wienhard [17]).

(1) For n ≥ 2, there exist closed manifolds MR and SMR and maps

Hit2n(S) → DRP2n−1(MR), Hit2n(S) → DS(R2n)(SMR) ,

that are homeomorphisms between Hit2n(S) and a connected component of their
target spaces.

(2) For n ≥ 1, there exists closed manifolds MC and SMC and connected compo-
nents U and SU of respectively DCP2n−1(MC) and DS(C2n)(SMC) and maps

U , SU → QHit2n(S)

that are covering maps whose deck transformations coincide with the action of
some elements of the mapping class group of MC or SMC, respectively.

In the four cases, the closed manifold (denote it by M) comes equipped with a homo-
morphism p : π1(M)→π1(S), and the geometric structure associated by the map to a
representation ρ has holonomy ρ ◦ p or ρ̄ ◦ p, where ρ̄ is a lift of ρ to SL(2n,R) or
SL(2n,C).

Part (1) of the previous theorem is in [17, Thm 11.3]. Part (2) is not explicitly
written there, since they don’t mention quasi-Hitchin representations, but the proof
of Part (2) is the same as the proof of [17, Thm 11.6]. The reason why the statement
is more complicated in Part (2) is because we don’t know the topology of QHit2n(S),
hence this space might be non simply-connected.

In order to prove the theorem, Guichard and Wienhard used their theorem about
domains of discontinuity, described in Section 4.1. This method can be applied to
all Qn-Anosov representations (see Section 2 for details), and all Hitchin and quasi-
Hitchin representations are Qn-Anosov. They also need to use some version of the
Thurston’s holonomy principle. They don’t clarify which version they are using, since
at the time the counterexamples to this principle were not well known, and it was
believed to be true in general. In this paper, we wrote Lemma 3.1 in order to clarify
this part of the proof. This is also the reason why, in the definition of QHit2n(S), we
required these representations to be irreducible.

When applied to the case of Hit2n(S), Theorem 4.2 describes the topology of a con-
nected component of DRP2n−1(MR) and DS(R2n)(SMR). When applied to the case
of QHit2n(S), it computes the dimension of an open subset of DCP2n−1(MC) and
DS(C2n)(SMC). Moreover, there is hope in the future to describe the topology of
QHit2n(S): for example the topology of QFuch2(S) is well understood.

This theorem is of central importance in the study of the Hitchin components and
the spaces of quasi-Hitchin representations because it allows us to see these spaces
as parameter spaces of geometric structures on a closed manifold. This strengthens
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the analogy between these spaces and Teichmüller space as well as the space of quasi-
Fuchsian representations.

This method of producing geometric structures does not give any information about
the topology of the constructed manifolds, and determining it directly is very hard.
Even the question whether the manifold is a fiber bundle over the surface is hard to
understand, except in the case of Hit4(S), where it was proved by Guichard-Wienhard
[16].

Another point that is not well understood is how to characterize the image of the
maps to the deformation spaces of geometric structures: the Hitchin components and
the quasi-Hitchin space parametrize some subset of geometric structures, but which
ones? A complete answer exists only for Hit4(S), see Guichard-Wienhard [16].

In this work, we address both questions. Our main result is the description of the
topology of the closed manifolds from Theorem 4.2, see Theorem 1.5 for details. We
also have some partial results about the geometric structures in the image of the maps:
the geometric structures are constructed on a fiber bundle over S, and each fiber has
a particular geometry, see Theorem 1.7 for details.

5. Stiefel manifolds

5.1. Projective embeddings. Consider (Cn, 〈·, ·〉), where 〈·, ·〉 is the standard Her-
mitian product:

〈v,w〉 = vT · w .
We denote the associated norm by |v| =

√
〈v, v〉. We consider R

n as a subset of Cn,
and the restriction of 〈·, ·〉 to R

n gives the standard scalar product.
Let K = R or C. We will consider the following subsets of Kn ×K

n = K
2n:

CC =
{
(v,w) ∈ C

n ×C
n
∣∣∣ Re(〈v,w〉) = 0, |v|2 = |w|2

}
,

CR =
{
(v,w) ∈ R

n ×R
n
∣∣∣ 〈v,w〉 = 0, |v|2 = |w|2

}
.

These subsets are cones, i.e they have the property that if (v,w) ∈ CK, then for every
λ ∈ K, we have (λv, λw) ∈ CK. As a consequence, these sets induce subsets of KP

2n−1

and S(K2n):

SFK =
{
[(v,w)]S ∈ S(K2n)

∣∣ (v,w) ∈ CK \ {0}
}
,

FK =
{
[(v,w)]P ∈ KP

2n−1
∣∣ (v,w) ∈ CK \ {0}

}
.

We see from the equations that SFR parametrizes ordered pairs of orthogonal unit
vectors in R

n, hence it is a Stiefel manifold. Similarly, we can see C
n as an R-vector

space of dimension 2n, with the scalar product Re(〈·, ·〉). In this way, from the equa-
tions, we see that SFC parametrizes ordered pairs of orthogonal unit vectors in R

2n

and is thus again a Stiefel manifold. Their topology is given by:

SFR = T 1
S
n−1, SFC = SF 2n

R = T 1
S
2n−1 ,

where the map SFR→S
n−1 and SFC→S

2n−1 are the projections [(v,w)]S 7→ [v]S.
By analogy, we will call the manifold FK a projective Stiefel manifold. The topology

of FR is given by
FR = SFR/Z2 = T 1

RP
n−1 ,

where the map FR→RP
n−1 is the projection [(v,w)]P→[v]P.

To describe FC we need to consider again the complex structure of Cn, that we see
as an action of U(1) by multiplication. This group acts on C

n, on S
2n−1 (the Hopf

action), on CC and on SFC. The space FC is the quotient of SFC by this action:

FC = SFC/U(1) = (T 1
S
2n−1)/U(1) ,

where the action of U(1) on T 1
S
2n−1 is the differential of the Hopf action on S

2n−1.
The space FC is closely related with the tangent bundle of CPn−1, see Lemma 10.1.
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We will give a more detailed description on SFK, FK in Section 10.

Definition 5.1. We will say that a submanifold M ⊂ S(K2n) is a standard spherical
embedding of the Stiefel manifold if there is a transformation in SL(2n,K) that sends
M to SFK.

Similarly, we will say that a submanifold M ⊂ KP
2n−1 is a standard projective

embedding of the projective Stiefel manifold if there is a transformation in PSL(2n,K)
that sends M to FK.

The submanifolds SFK and FK are real algebraic smooth subvarieties of S(K2n) and
KP

2n−1 respectively, and they are both projective and affine real algebraic varieties,
for K = R or C. Note even for K = C, they are not complex varieties, because the
equations involve the complex conjugation.

5.2. Group actions. The natural action of O(n) on (Rn, 〈·, ·〉) induces an action of
O(n) on R

n × R
n, CR, SFR and FR, which is transitive on SFR and FR. Using the

transitive action we can see the spaces SFR and FR as homogeneous spaces:

SFR = O(n)/O(n − 2), FR = O(n)/(O(n − 2)× 〈±Id〉) .
Similarly, we have a natural action of O(2n) on (Cn,Re(〈·, ·〉)) by R-linear maps

which induces an action of O(2n) on C
n × C

n, CC, SFC, which is transitive on SFC,
so we have:

SFC = O(2n)/O(2n − 2) .

It is important to remark that the O(2n)-action on SFC does not induce an O(2n)-
action on FC. Recall that we see the complex structure of Cn as an action of U(1),
which acts as a subgroup of O(2n). The only elements of O(2n) that have a well
defined action on FC are the ones that commute with U(1). This is precisely the
subgroup U(n), the elements of O(2n) whose action on C

n is C-linear. The group
U(n) acts on C

n × C
n, CC, SFC and FC, but this action is never transitive because

the function f(v,w) = Im(〈v,w〉)
|v||w| , well defined on FC and SFC, is U(n)-invariant and

takes all the values in [−1, 1].
Every homogeneous space G/H carries a left action of G and a right action of

NG(H)/H. These two actions commute, so they give an action of G × NG(H)/H.
For SFK, we have NG(H)/H = O(2) and for FR, NG(H)/H = PO(2). The action of
O(n)×O(2) on O(n)/O(n − 2) can also be described explicitly with matrix multipli-
cation. We see an element (v,w) ∈ CR as a n× 2 matrix. Then the action becomes:

(3) (O(n)×O(2))× CR ∋ ((A,B), (v,w)) 7−→ A(v,w)B−1 ∈ CR .

It descends to an O(n)×O(2)-action on SFR and FR. The same formula describes the
U(n)×O(2)-action on SFC and FC. The fact that the right O(2)-action is well defined
on FC should not be surprising, because the right O(2)-action on SFC commutes with
the U(1)-action given by the complex structure, inducing an O(2)-action on FC.

We consider the representation

(4) δ : U(1) ∋ eiθ 7−→ (Id, Rθ) ∈ G×O(2) ,

where G is one of the groups O(n), O(2n) or U(n), and Rθ ∈ SO(2) is

(5) Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

This U(1)-action can easily be described in words: the rotation Rθ acts on every
[(v,w)]S ∈ SFR by rotating the vectors v,w by an angle θ in the plane 〈v,w〉

R
. When

SFR is seen as unit tangent bundle of a sphere, this action is the geodesic flow, which
is periodic, hence it is a circle action.
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5.3. Alternative equations of the embeddings. We introduce another description
of the Stiefel manifolds, which will be used in Section 6. Consider the C-antilinear
involution τ0 defined as

τ0 : C
2n ∋ (t1, t2, . . . , t2n)

T −→ (t2n, t2n−1, . . . , t1)
T ∈ C

2n .

We will use τ0 as a real structure on C
2n, this means that the real points with reference

to τ0 are

(6) Fix(τ0) =
{
v ∈ C

2n
∣∣ v = τ0(v)

}
.

Consider the sets

C ′
C =

{
t = (t1, . . . , t2n)

T ∈ C
2n
∣∣∣
∑n

j=1 t2j−1t2j = 0
}
, C ′

R = C ′
C ∩ Fix(τ0) .

These subsets are cones, hence they induce subsets of KP
2n−1 and S(K2n):

SF ′
C =

{
[t]S ∈ S(C2n)

∣∣ t ∈ C ′
C \ {0}

}
, SF ′

R = SF ′
C ∩ Fix(τ0) .

F ′
C =

{
[t]P ∈ CP

2n−1
∣∣ t ∈ C ′

C \ {0}
}
, F ′

R = F ′
C ∩ Fix(τ0) .

In the rest of this subsection we will prove that SF ′
C
, SF ′

R
, F ′

C
, F ′

R
are standard

spherical or projective embeddings of the Stiefel manifolds. Let k be such that n = 2k
if n is even, n = 2k + 1 if n is odd. We consider the representation

(7) φ : U(1) ∋ eiθ 7−→ (Lθ, Rθ) ∈ O(n)×O(2) ,

where Rθ was defined in (5) and Lθ is

(i) Lθ = diag(L1, L2, · · · , Lk), if n = 2k is even,
(ii) Lθ = diag(L1, L2, · · · , Lk, 1), if n = 2k + 1 is odd, where

Li =

(
cos((2n + 2− 4i)θ) − sin((2n + 2− 4i)θ)
sin((2n + 2− 4i)θ) cos((2n + 2− 4i)θ)

)
.

We also consider the representation

(8) φ′ : U(1) ∋ eiθ 7−→ (ei(2n−1)θ , ei(2n−3)θ , · · · , ei(1−2n)θ) ∈ U(2n) .

Remark 5.2. The representation φ leaves invariant the sets CC and CR. By quotient,
it also acts on SFC, SFR, FC, and FR. The representation φ can be thought of as a
modification of the geodesic flow δ from (4). Similarly, the representation φ′ leaves
invariant the sets C ′

C
and C ′

R
, and acts, by quotient on SF ′

C
, SF ′

R
, F ′

C
, and F ′

R
. These

U(1)-actions on FC, FR, F
′
C
, and F ′

R
are not effective, since the subgroup {±1} acts

trivially.

Lemma 5.3. There is a C-linear isomorphism A : C2n ∋ t 7→ (v,w) ∈ C
n × C

n with
the following properties.

(1) It maps Fix(τ0) to R
n × R

n.
(2) It maps C ′

K
, SF ′

K
, F ′

K
to CK, SFK, FK respectively.

(3) It conjugates the representation φ′ to the representation φ.

In particular, SF ′
K
and F ′

K
are standard spherical or projective embeddings of the Stiefel

manifolds.

Proof. Consider the C-linear transformation A defined by

A : C2n ∋ t 7→ (v,w) ∈ C
n × C

n ,

where, for 2k ≤ n, we have



v2k−1

w2k−1

v2k
w2k


 =

1

2




1 1 1 1
−i i −i i
−i −i i i
−1 1 1 −1







tk
tk+1

t2n−k
t2n−k+1


 = Ak




tk
tk+1

t2n−k
t2n−k+1
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and if n is odd, the last coordinate is
(
vn
wn

)
=

√
2

2

(
1 1
−i i

)(
tn
tn+1

)
= B

(
tn
tn+1

)
.

The coordinate transformation A is block-diagonal after changing the order of the
coordinates, with 4 × 4 blocks A1, A2, · · · , Ak and possibly one 2 × 2 block B. A is
invertible because Ak’s and B are invertible:

A−1
k =

1

2




1 i i −1
1 −i i 1
1 i −i 1
1 −i −i −1


 , B =

√
2

2

(
1 i
1 −i

)
.

It’s also easy to check the property that A(τ0(t)) = A(t) and it takes Fix(τ0) to R
n×

R
n. So Part (1) follows. An elementary computation shows that the equation |v|2 =

|w|2 is equivalent to the equation Re(
n∑
j=1

t2j−1t2j) = 0, the equation Re(〈v,w〉) = 0 is

equivalent to the equation Im(
n∑
j=1

t2j−1t2j) = 0, and
2n∑
i=1

|ti|2 =
n∑
i=1

(|vi|2 + |wi|2). So

Part (2) follows.
We can understand the transformation of every block by the following computation:

Ai




ei(2n+3−4i)θ

ei(2n+1−4i)θ

e−i(2n+1−4i)θ

e−i(2n+3−4i)θ


A−1

i

=

(
cos((2n + 2− 4i)θ) − sin((2n + 2− 4i)θ)
sin((2n + 2− 4i)θ) cos((2n+ 2− 4i)θ)

)
⊗
(
cos θ − sin θ
sin θ cos θ

)
= Li ⊗R

B

(
eiθ

e−iθ

)
B−1 = 1⊗

(
cos θ − sin θ
sin θ cos θ

)
= 1⊗R

Comparing the definition of the representation φ of U(1) into U(2n), we obtain
Aφ′(eiθ)A−1 = φ(eiθ), for eiθ ∈ U(1). So Part (3) follows. �

6. Construction of Projective Structures

In this section, we will construct projective and spherical structures starting from
a Hitchin or quasi-Hitchin representation. More precisely, our construction will work
when the representation lies in a small neighborhood of the Fuchsian locus Fuch2n(S).
We will initially work with a representation ρ ∈ Fuch2n(S), and we will subsequently
extend our results to representations that are close enough to ρ.

The manifolds that will support the geometric structures are constructed in the
following explicit way. Let K be R or C, and let P be a principal U(1)-bundle on S
with Euler class g − 1. We recall that the Euler class of a U(1)-bundle completely
determines the isomorphism class of the bundle. We consider the representation φ′

given by (8) and recall that by Remark 5.2, this gives U(1)-actions on SF ′
K

and F ′
K
.

We define the associated bundles

SUK := P ×φ′ SF
′
K ,

UK := P ×φ′ F
′
K ,

whose projections we denote by

p : UK → S , p : SUK → S .
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Remark 6.1. It is important to remark that the U(1)-action on F ′
K

is not effective,
the subgroup {±1} acts trivially. We have an effective action on F ′

K
of the quotient

group U(1)/{±1}, that is still isomorphic to U(1). We will always consider UK as a
U(1)-bundle with reference to this new structure group, and we notice that, with this
new group, the bundle UK has Euler class 2g − 2.

The definition of the manifolds SUK and UK is explicit. In Sections 9 and 10 we
will describe their topology more precisely.

6.1. General strategy. Let ρ : π1(S) → PSL(2n,R) be a Fuchsian representation
in PSL(2n,R). It can be lifted to a representation ρ : π1(S) → SL(2n,R). The
representation ρ induces representations

ρ̂ = ρ ◦ p∗ : π1(UK) → PSL(2n,R) , ρ̂ = ρ ◦ p∗ : π1(SUK) → SL(2n,R) ,

that is trivial on the fibers of the bundles UK and SUK.
We will then construct a KP

2n−1-structure on UK with holonomy ρ̂, and a S(K2n)-
structure on SUK with holonomy ρ̂, by using the technique of graph of geometric
structures described in Section 3.3.

We will consider the flat (real or complex) vector bundle (EK,∇K) over S associated
with the representation ρ. This bundle has an associated spherical bundle S(EK) and
an associated projective bundle P(EK), with bundle maps

EK → S(EK) → P(EK) .

By introducing a scalar or Hermitian product on EK, we can also embed the spherical
bundle into E:

S(E) → E .

Now a KP
2n−1-structure on UK with holonomy ρ̂ is given by a transverse section of the

pull-back bundle p∗P(EK), and a S(K2n)-structure on SUK with holonomy ρ̂ is given
by a transverse section of p∗S(EK). We divide our construction of these transverse
sections in two steps.

The first step (in Section 6.3) is to realize UK as a subbundle of P(EK) and SUK

as a subbundle of S(EK). Then we can define the section s : UK → p∗P(EK) as the
tautological section that associates to every point v of UK the same point v seen as a
point of P(EK), and similarly for SUK. This gives us the sections.

The second step (in Section 6.4) is to verify the transversality condition of the
section s.

6.2. Higgs bundles. For both steps, we will use the Higgs bundle description of
(EK,∇K). This is inspired by Baraglia’s Thesis [6], see also the survey paper [1] and
our previous paper [2]. Let’s briefly recall the basic definitions of Higgs bundles. We
need a complex structure Σ on S, and we denote by K the canonical bundle of Σ, i.e.
the holomorphic cotangent bundle.

Definition 6.2. An SL(2n,R)-Higgs bundle over Σ is a tuple (EC, ω,Q, φ) where
EC is a holomorphic vector bundle of rank 2n over Σ satisfying detEC = O, ω ∈
H0(Σ,detEC) is a holomorphic volume form, Q : EC→E∗

C
is a holomorphic symmetric

C-bilinear form of volume one for ω, and φ ∈ H0(Σ,End(EC) ⊗ K) is Q-symmetric
and satisfies trφ = 0.

An SL(2n,R)-Higgs bundle (EC, ω,Q, φ) is called stable if every proper φ-invariant
holomorphic subbundle has negative degree. The work of Hitchin [19, 20], Simpson
[28] and Bradlow-Garcia-Prada-Gothen [8] assures that for a stable SL(2n,R)-Higgs
bundle over Σ, there exists a Hermitian metric H satisfying the Hitchin equation

F∇H
+ [φ, φ∗H ] = 0,
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where ∇H is the Chern connection of H, F∇H
is the curvature of ∇H and φ∗H is the

Hermitian adjoint of φ. Equivalently, the connection

∇C = ∇H + φ+ φ∗H

is flat. Moreover, the metric H, seen as a smooth C-anti-linear isomorphism between
EC and E∗

C
, commutes with Q, in the sense that Q ◦ H = H ◦ Q. This defines a

C-anti-linear involution on EC given by

(9) τ = H ◦Q : EC → EC ,

which is a real structure over EC. The real part of EC is the smooth real vector bundle

ER = Fix(τ) = {v ∈ EC | τ(v) = v} .
The connection ∇C preserves ER, and we define ∇R as the restriction of ∇C to ER.

In terms of structure groups, the pair (ω,Q) induces a holomorphic SO(2n,C)-
structure on EC, and H induces a smooth SU(2n)-structure on EC. Together, these
two structures induces a smooth SL(2n,R)-structure on EC and on ER. The pairs
(EC,∇C) and (ER,∇R) are flat (resp. complex and real) vector bundles with the same
holonomy in SL(2n,R).

In this work, we want to use Higgs bundles to describe the flat (EK,∇K) bundles
associated with the Fuchsian representation ρ ∈ Fuch2n(S). For this, we denote by
Σ the Riemann surface homeomorphic to S that corresponds to ρ. We consider the
SL(2n,R)-Higgs bundle (EC, ω,Q, φ) over Σ, given by

EC = K
2n−1

2 ⊕K
2n−3

2 ⊕ · · · ⊕K
1−2n

2 , ω = 1 ∈ detE = O ,(10)

Q =




1
1

. .
.

1


 , φ =




0
r1 0

r2 0
. . .

. . .

r2n−1 0



,(11)

where ri =

√
i(n−i)

2 for 1 ≤ i ≤ 2n − 1. For this Higgs bundle, the monodromy of

the flat connection ∇C is precisely the representation ρ corresponding to the Riemann
surface Σ.

The Hermitian metric H is purely determined by the unique hyperbolic metric in
the conformal class of Σ. Let h2|dz|2 = 1

2y2
|dz|2 be the Hermitian hyperbolic metric

on Σ, that is, it satisfies △ log h = h2, where △ = 4∂z∂z̄. Then one can check the
Hermitian metric solving Hitchin equation is

(12) H = diag(h1−2n, h3−2n, · · · , h2n−1) .

The Hermitian adjoint of φ is

φ∗H =




0 r1h
2

0 r2h
2

. . .
. . .

0 r2n−1h
2

0



.

We can write τ explicitly: for a local section λ · dz 2n+1−2k
2 of EC, we have:

τ
(
λ · dz 2n+1−2k

2

)
= H ◦Q

(
λ · dz 2n+1−2k

2

)
= H

(
λ · dz 2k−2n−1

2

)

= λ̄ · h2k−2n−1dz
2k−2n−1

2 .
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So with respect to the local frame
{
dz

2n−1
2 , dz

2n−3
2 , · · · dz 1−2n

2

}
of E, we have:

(13) τ




t1
t2
...
t2n


 =




h2n−1t2n
h2n−3t2n−1

...
h1−2nt1


 .

The real part ER is given by

(14) ER =

{(
h

2n−1
2 t1, h

2n−3
2 t2, . . . , h

1−2n
2 t2n)

)T ∣∣∣∣ ti = t̄2n+1−i for 1 ≤ i ≤ 2n

}
.

6.3. Embedding of SUK and UK. We now want to embed the bundles SUK and
UK into S(EK) and P(EK), respectively, as subbundles. To do this, we will use the
description of EK given by the theory of Higgs bundles.

Suppose P ′ be the unitary frame bundle of K
1
2 which is a principal U(1)-bundle of

Euler class g − 1. Suppose z is a local complex coordinate on Σ and h2|dz|2 is the

Hermitian hyperbolic metric on Σ. So h
1
2 dz

1
2 is a local section of P ′, denoted by σ.

Then any local section of P ′ is of the form σ · eiθ.
We define σi := σ⊗

2n+1−2i
2 , a unitary frame of K⊗ 2n+1−2i

2 . Let P1 be the fiber bundle
over Σ consists of unitary frames of the form (σ1, σ2, · · · , σ2n) · eiθ = (σ1 · ei(2n−1)θ , σ2 ·
ei(2n−3)θ , · · · , σ2n · ei(1−2n)θ). It is clear that there is a natural transitive and effective
right action of U(1).

The bundles P ′ and P1 are isomorphic as principal U(1)-bundles via the map η :
P ′→P1 as follows:

η(σ · eiθ) = (σ1, σ2, · · · , σ2n) · eiθ.
Lemma 6.3. P1 is a principal U(1)-bundle over S of Euler class g − 1.

Note that the Euler number completely determines a principal U(1)-bundle on a
closed orientable surface S. In particular, this guarantees that P1 is isomorphic to
the U(1)-bundle P , introduced at the beginning of the section. Using the fact that
U(1) acts on C

2n through the representation φ′, we have the associated complex vector
bundle P1 ×φ′ C

2n.

Lemma 6.4. The map

Ψ : P1 ×φ′ C
2n −→ EC(15)

(
(σ1, · · · , σ2n) · eiθ, φ′(e−iθ) · t

)
7−→

2n∑

i=1

tiσi, for t = (t1, · · · , t2n)T(16)

is an isomorphism of U(1)-bundles. Moreover, Ψ restricts to an isomorphism of U(1)-
bundles from P1 ×φ′ Fix(τ0) to ER.

Proof. The first statement is clear. For the second, note that τ(σi) = σ2n+1−i. Suppose
ti = t̄2n+1−i for 1 ≤ i ≤ 2n, then

τ

(
2n∑

i=1

tiσi

)
=

2n∑

i=1

t̄iτ(σi) =
2n∑

i=1

t2n+1−iσ2n+1−i =
2n∑

i=1

tiσi . �

The previous two lemmas give us an explicit way to embed SUK into S(EK) and UK

into P(EK) as subbundles. Indeed, by Lemma 6.3, P1 is isomorphic to the principal
bundle P introduced at the beginning of the section. Hence SUK = P1 ×φ′ SF

′
K
and

UK = P1 ×φ′ F
′
K
. Since SF ′

K
is a subset of S(C2n) or S(Fix(τ0)) and F

′
K
is a subset of

P(C2n) or P(Fix(τ0)), Lemma 6.4 gives embeddings

SUK→S(EK) , UK→P(EK) .
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To make this more explicit, we can write the equations of the subbundles SUK and
UK. We denote by C(EK) the bundle

C(EK) := P1 ×τ2n C
′
K .

In terms of the local frames
{
dz

2n−1
2 , dz

2n−3
2 , · · · dz 1−2n

2

}
, it has the following form:

(17) C(EK) :=

{(
h

2n−1
2 t1, h

2n−3
2 t2, . . . , h

1−2n
2 t2n

)T
∈ EK

∣∣∣∣∣

n∑

i=1

t2i−1t̄2i = 0

}
.

The subbundles SUK and UK are the projection of C(EK) to S(EK) and P(EK).

6.4. Transversality of the tautological section. We now consider the pullback
bundles p∗S(EK) → SUK and p∗P(EK) → UK, whose flat structure is described by
the flat connections p∗∇K and p∗∇K. Note that SUK, UK are subsets of S(EK),P(EK)
respectively. We denote by

[s]S : SUK→p∗S(EK) , [s]P : UK→p∗P(EK) ,

the tautological sections: for x ∈ SUK ⊂ S(EK), [s]S(x) is the same point seen as a
point of the pull-back bundle p∗S(EK). Similar definition for [s]P.

Theorem 6.5. The tautological sections sS and sP are transverse.

Proof. We consider the bundle

p : C(EK) → S .

This bundle is a subset of EK, hence the pull-back bundle p∗EK has a tautological
section

s : C(EK) → p∗EK .

Locally, for a coordinate neighborhood (V, z) of Σ, (z, t) ∈ V ×C ′
K
parametrizes the

point
2n∑
i=1

ti · σi ∈ C(EK), where σi = h
2n+1−2i

2 · dz 2n+1−2i
2 as defined before.

Correspondingly, we have the tautological section s : C(EK) → p∗EK as follows: at
point (z, t) ∈ C(EK),

s(z, t) :=

2n∑

i=1

ti · p∗σi.

Since s(z, λ · t) := λ ·
2n∑
i=1

ti · p∗σi, for λ ∈ K, the section s descends to tautological

sections sS : SUK → p∗S(EK) and sP : UK → p∗P(EK). By the dimension count, the
transversality of the tautological sections sS and sP follow directly from the transver-
sality of s.

At x0 = (z0, t0) ∈ C(EC), denote (
∂
∂z
)x0 , (

∂
∂z̄
)x0 as the tangent vector to V ×{t0} ⊂

V ×C ′
K
and v as the tangent vector to {z0}×C ′

K
⊂ V ×C ′

K
at x0. Therefore, to show

the transversality of s, it is equivalent to show that suppose there exist a ∈ C and a
vertical tangent vector v of Tx0C(EC) (that is, p∗v = 0) such that

(18) a(p∗∇)zs+ a(p∗∇)zs+ (p∗∇)vs = 0,

then a is equal to 0 and v is 0.

For the section s(z, t) =
2n∑
i=1

ti · p∗σi and a tangent vector X of C(EK)/{0}, the rule
for the pullback connection is

(p∗∇)Xs =

2n∑

i=1

ti · p∗(∇p∗Xσi) +

2n∑

i=1

X(ti) · p∗σi.
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Therefore,

(p∗∇)( ∂
∂z

)x0
s =

2n∑

i=1

ti · p∗(∇( ∂
∂z

)z0
σi), (p∗∇)( ∂

∂z̄
)x0
s =

2n∑

i=1

ti · p∗(∇( ∂
∂z̄

)z0
σi).

For a vertical direction v, we have p∗(v) = 0, then

(p∗∇)vs =

2n∑

i=1

v(ti) · p∗σi.

Equation (18) then reduces to: there exist a ∈ C and a vertical tangent vector v at
Tx0C(EC) ⊂ Tx0EC such that

(19) a∇zs+ a∇zs+ v = 0 at some point z0 = p(x0) ∈ Σ.

From now on, we will make computations in terms of the local holomorphic frame

{dz 2n−1
2 , dz

2n−3
2 , · · · dz 1−2n

2 }.
• The tautological section

s =
(
h

2n−1
2 t1 h

2n−3
2 t2 · · · h

1−2n
2 t2n

)T

satisfies
n∑
i=1

t2i−1t̄2i = 0.

• The vertical tangent vector along each fiber is

v =
(
h

2n−1
2 v1 h

2n−3
2 v2 · · · h

1−2n
2 v2n

)T

satisfying
n∑
i=1

v2i−1t2i +
n∑
i=1

t2i−1v2i = 0.

• The derivatives of s with respect to ∂
∂z
, ∂
∂z

direction are

∇zs = (∂ +H−1∂H + φ)s = −




∂(h
2n−1

2 )t1

∂(h
2n−3

2 )t2
...

∂(h
1−2n

2 )t2n




+




0

r1h
2n−1

2 t1
...

r2n−1h
3−2n

2 t2n−1



,

∇zs = (∂ + φ∗H)s =




∂(h
2n−1

2 )t1
...

∂(h
3−2n

2 )t2n−1

∂(h
1−2n

2 )t2n




+




r1h
2n+1

2 t2
...

r2n−1h
5−2n

2 t2n
0



.

Note that directly checking each entry of the vector-valued Equation (19) is not a
wise idea since it is not easy to catch useful information. Instead, we introduce two
test directions at point x0:

P =
(
h

1−2n
2 t2 −h 3−2n

2 t1 h
5−2n

2 t4 −h 7−2n
2 t3 · · · −h 2n−1

2 t2n−1

)T
,

Q =
(
h

1−2n
2 t2 h

3−2n
2 t1 h

5−2n
2 t4 h

7−2n
2 t3 · · · h

2n−1
2 t2n−1

)T
.
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The inner products of v,∇zs,∇zs with P are as follows:

〈v, P 〉 =
n∑

i=1

v2i−1t2i −
n∑

i=1

v2it2i−1, hence Im 〈v, P 〉 = 0.

〈∇zs, P 〉 = A−
n∑

i=1

r2i−1h|t2i−1|2 +
n−1∑

i=1

r2iht2it2i+2.

〈∇zs, P 〉 = B +
n∑

i=1

r2i−1h|t2i|2 −
n−1∑

i=1

r2iht2i+1t2i−1.

Let ak =
2n+1

2 − k. Here

A = −
n∑

i=1

∂(ha2i−1)t2i−1h
−a2i−1t2i +

n∑

i=1

∂(ha2i)t2ih
−a2it2i−1

= ∂ log h(
n∑

i=1

a2i(t2it2i−1 − t2i−1t2i)−
n∑

i=1

t2i−1t̄2i)

= ∂ log h ·
n∑

i=1

a2i(t2it2i−1 − t2i−1t2i)

and

B =

n∑

i=1

∂(ha2i−1)t2i−1h
−a2i−1t2i −

n∑

i=1

∂(ha2i)t2ih
−a2it2i−1

= ∂ log h(
n∑

i=1

a2i(t2i−1t̄2i − t2it2i−1) +
n∑

i=1

t2i−1t2i)

= ∂ log h ·
n∑

i=1

a2i(t2i−1t̄2i − t2it2i−1)

Therefore A = B, and then Im(aA+ aB) = 0. Hence

0 = i Im(a 〈∇zs, P 〉+ a 〈∇zs, P 〉+ 〈v, P 〉)

= h · i Im
(

n∑

i=1

r2i−1(−a|t2i−1|2 + a|t2i|2) +
n−1∑

i=1

r2i(at2it2i+2 − at2i+1t2i−1)

)

So we obtain the first important equation

(20) − i Im(a) ·
n∑

i=1

r2i−1(|t2i−1|2 + |t2i|2) + i
n−1∑

i=1

r2iIm(at2it2i+2 − at2i+1t2i−1) = 0.

Similarly, the inner product of v,∇zs,∇zs with Q are as follows:

〈v,Q〉 =

n∑

i=1

v2i−1t2i +

n∑

i=1

v2it2i−1, hence Re 〈v,Q〉 = 0.

〈∇zs,Q〉 = C +

n∑

i=1

r2i−1h|t2i−1|2 +
n−1∑

i=1

r2iht2it2i+2.

〈∇zs,Q〉 = D +

n∑

i=1

r2i−1h|t2i|2 +
n−1∑

i=1

r2iht2i+1t2i−1.
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Here

C = −
n∑

i=1

∂(ha2i−1)t2i−1h
−a2i−1t2i −

n∑

i=1

∂(ha2i)t2ih
−a2it2i−1

= −∂ log h(
n∑

i=1

a2i(t2i−1t2i + t2it2i−1) +

n∑

i=1

t2i−1t̄2i)

= −∂ log h ·
n∑

i=1

a2i(t2i−1t2i + t2it2i−1)

and

D =

n∑

i=1

∂(ha2i−1)t2i−1h
−a2i−1t2i +

n∑

i=1

∂(ha2i)t2ih
−a2it2i−1

= ∂ log h(

n∑

i=1

a2i(t2i−1t̄2i + t2it2i−1) +

n∑

i=1

t2i−1t2i)

= ∂ log h ·
n∑

i=1

a2i(t2i−1t̄2i + t2it2i−1)

Therefore C = −D̄ and then Re(aC + aD) = 0. Hence

0 = Re(a 〈∇zs,Q〉+ a 〈∇zs,Q〉+ 〈v,Q〉)

= h · Re
(

n∑

i=1

r2i−1(a|t2i−1|2 + a|t2i|2) +
n−1∑

i=1

r2i(at2it2i+2 + at2i+1t2i−1)

)

So we obtain the second important equation

(21) Re(a) ·
n∑

i=1

r2i−1(|t2i−1|2 + |t2i|2) +
n−1∑

i=1

r2iRe(at2it2i+2 + at2i+1t2i−1) = 0.

Summing up Equations (20), (21), we obtain

(22) a ·
n∑

i=1

r2i−1(|t2i−1|2 + |t2i|2) + a ·
n−1∑

i=1

r2i(t2it2i+2 + t̄2i+1t2i−1) = 0.

Our goal is to show the above equality only holds if a = 0. Recall that rk =√
k(2n−k)

2 and set r0 = r2n = 0, then

4r22i−1 − (r2i + r2i−2)
2 ≥ 4r22i−1 − 2(r22i + r22i−2)

= 2(2i− 1)(2n − 2i+ 1) − (2i)(2n − 2i) − (2i− 2)(2n − 2i+ 2) = 2.

So we have 2r2i−1 > r2i + r2i−2 and
∣∣∣∣∣

n∑

i=1

r2i−1(|t2i−1|2 + |t2i|2)
∣∣∣∣∣ >

1

2

∣∣∣∣∣

n∑

i=1

(r2i + r2i−2)(|t2i−1|2 + |t2i|2)
∣∣∣∣∣

≥ 1

2

∣∣∣∣∣

n−1∑

i=1

r2i

(
|t2i|2 + |t2i+2|2 + |t2i−1|2 + |t2i+1|2)

∣∣∣∣∣

≥
∣∣∣∣∣

n−1∑

i=1

r2i(t2it2i+2 + t̄2i+1t2i−1)

∣∣∣∣∣ ,

where the first strict inequality follows from the fact that t 6= 0. Then Equation (22)
holds only if a = 0 and thus v = 0. We finish proving the transversality of s. �
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The previous proposition gives a way to construct spherical and projective structures
on SUK and UK respectively with a chosen holonomy. We get maps

GFK : Fuch2n(S) → DS(K2n)(SUK) , GFK : Fuch2n(S) → DKP2n−1(UK) ,

from the space of Fuchsian representations to the deformation spaces of geometric
structures such that

hol(GFK(ρ)) = ρ ◦ p∗ , hol(GFK (ρ)) = ρ ◦ p∗ .

6.5. Nearby representations. We will now extend the maps GFK and GF
K

from the
previous section to a small neighbourhood of Fuch2n(S) in Hit2n(S) or QHit2n(S). We
will see that, for representations that are close enough to Fuch2n(S), the corresponding
geometric structure can be constructed with the method of the graph of a geometric
structure. From this, we will deduce Theorem 6.7, about some special properties of
these geometric structures.

Proposition 6.6. Let K = R or C. There is a connected open subset NK in Hit2n(S)
if K = R or in QHit2n(S) if K = C, and unique maps

GK : NK → DS(K2n)(SUK) , GK : NK → DKP2n−1(UK) ,

such that

(1) hol(GK(ρ)) = ρ ◦ p∗ and hol(GK(ρ)) = ρ ◦ p∗.
(2) Fuch2n(S) ⊂ NK.

(3) The restrictions of GK and GK to Fuch2n(S) are GFK and GF
K
.

Proof. Hitchin and quasi-Hitchin representations are absolutely irreducible, hence by
Lemma 3.1, the map hol is a local homeomorphism. For every Fuchsian representation

ρ we can find a small connected open neighborhood Uρ of GFK(ρ) and GF
K
(ρ) such that

hol has a unique local inverse, and we will define GK and GK on hol(Uρ) to agree with
the local inverse. The set NK can be defined as the union of all the open sets hol(Uρ)
for ρ ∈ Fuch2n(S). �

Now, we will construct a (possibly smaller) connected open neighborhood OK ⊂ NK,
where we can see that the geometric structures GK(ρ) and GK(ρ), for ρ ∈ OK, can be
constructed using the method of the graph of a geometric structure.

Fix a ρ0 ∈ Fuch2n(S), and choose a hyperbolic metric h on S that induces the
Fuchsian representation ρ0. With this hyperbolic metric, S becomes a Riemann surface
Σ.

Let (EC, ω,Q, φ) be the Higgs bundle on Σ corresponding to the Fuchsian represen-
tation ρ0, given by (10),(11). In coordinates, we write the metric h as h2|dz|2, and
this induces a Hermitian metric H on EC, as in (12). Using H and the bilinear form
Q from (11), we can define a real structure τ as in (9), and a real subbundle

ER = { v ∈ EC | τ(v) = v } .
Using the Hermitian metric H, we can define some new subbundles C(EK) as in

(17). The projective and spherical quotients of C(EK) are homeomorphic to the mani-
folds UK and SUK respectively, and the pull-back bundles p∗P(EK) and p

∗
S(EK) have

tautological sections [s]P and [s]S as above. Notice that the construction of C(EK)
and the sections sections [s]P and [s]S is carried out on a Higgs bundle for a Fuchsian
representation.

We will now consider the (infinite dimensional) space DK of all smooth, absolutely
irreducible, flat connections on the bundle EK that preserve the volume form ω. This
space carries a free action of the gauge group of EK, and the quotient map induced
by this action is

π : DK −→ Homa.i.(π1(S), SL(2n,K))/SL(2n,K) .
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Since π is the quotient map by a group action, it is an open map.
Now we consider the flat connection ∇C ∈ DC that solves Hitchin’s equations for

the Fuchsian Higgs bundle (EC, ω,Q, φ). We denote by ∇R ∈ DR its restriction to the
real part ER.

We proved in Theorem 6.5 that [s]P and [s]S are transverse sections for ∇K. That
proof used the theory of Higgs bundles for describing the Fuchsian flat connection
∇K. Since the manifolds UK and SUK are compact, we can find an open connected
neighborhood U∇K

of∇K in DK such that [s]P and [s]S are transverse for all connections
in U∇K

. Since the projection π is open, the image Vρ0 = π(U∇K
) is an open connected

neighborhood of ρ0. For every ρ ∈ Vρ0 ∩ NK, the geometric structures determined by

[s]P and [s]S must coincide with GK(ρ) and GK(ρ), by the uniqueness, and they are
obtained from the graph of a geometric structure.

We can now define the subset OK as the union over ρ0 ∈ Fuch2n(S) of the Vρ0 ,
intersected with NK. From this we can deduce the following special property of the
geometric structures constructed in a neighborhood of the Fuchsian representations:
the developing image of every fiber is a standard embedding of the Stiefel manifold.

Theorem 6.7. For K = R or C, fix a representation ρ ∈ OK. Denote by S̃UK and

ŨK the universal coverings of SUK and UK, and by

D[s]S : S̃UK −→ S(K2n) ,

D[s]P : ŨK −→ KP
2n−1

the developing maps corresponding to the geometric structures GK(ρ) and GK(ρ). For
every point x ∈ S, let SF = p−1(x) and F = p−1(x) denote the fibers above x in SUK

and UK respectively. Let S̃F and F̃ denote one of their lifts to the universal covering.
Then their images via the developing map

D[s]S

(
S̃F
)
⊂ S(K2n) ,

D[s]P

(
F̃
)
⊂ RP

2n−1

are standard spherical or projective embeddings of the Stiefel manifolds.

Proof. Recall from the second paragraph of Section 6 that the holonomy of the geo-
metric structure GK(ρ) is ρ̂ = ρ ◦ p∗, where p : UK→S is the fiber bundle map and ρ̂
is induced by a flat connection on the bundle EK→S, pulled back to p∗EK→UK.

Let ι : F→UK be the inclusion of the fiber over x ∈ S. Since the connection on p∗EK

is a pull-back connection, when we restrict it to the bundle ι∗p∗EK→F we obtain a
trivial connection: the bundle is a product bundle

ι∗p∗EK ≃ K
2n × F→F ,

endowed with the product connection. Hence, the connection identifies all the fibers
with a copy of K2n.

The developing map D[s]P was defined as the ρ-equivariant map associated with the
tautological section s by the flat connection. When we restrict D[s]P to one fiber, we
can compute it explicitly using the description of ι∗p∗EK as a product bundle. Using

(17) and Lemma 5.3, we can see that the image D[s]P

(
F̃
)

is a standard projective

embedding of the projective Stiefel manifold.
The proof for the geometric structure GK(ρ) is the same. �

7. Domains of discontinuity and developing Image

In Section 6, we constructed geometric structures GK(ρ) and GK(ρ) associated with
a Hitchin or quasi-Hitchin representation ρ close enough to the Fuchsian locus. These
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are structures on the manifolds SUK and UK, manifolds whose topology is explicitly
known.

The construction given in Section 6 was completely independent from the construc-
tion of geometric structures using domains of discontinuity briefly described in Section
4. In that Section, the geometric structures are on the manifoldsMK and SMK, whose
topology is difficult to understand.

In this section, we compare the structures constructed with the two methods. We
will prove that, when ρ ∈ OK, the structures GK(ρ) and GK(ρ) are isomorphic to the
structures constructed using domains of discontinuity. In particular, this proves that
the manifold SMK is homeomorphic to SUK, and MK is homeomorphic to UK. In this
way, we can determine the topology of the manifolds SMK and MK.

7.1. Comparison theorem.

Theorem 7.1. For K = R or C, suppose that ρ ∈ OK. Then the structures GK(ρ)
and GK(ρ) are isomorphic to the structures constructed in Section 4.1 and Theorem
4.2 using domains of discontinuity. In particular, MK is homeomorphic to UK and
SMK is homeomorphic to SUK.

Remark 7.2. In a paper in preparation, Guichard and Wienhard already proved that
SMR is homeomorphic to the total space of a fiber bundle over S with fiber the Stiefel
manifold SFR. No similar results were known for SMC or MC.

Corollary 7.3. For every ρ ∈ OK, the geometric structures described in Section 4.1
and Theorem 4.2 using domains of discontinuity have the property stated in Theorem
6.7: the developing image of a fiber is a standard embedding of the Stiefel manifold.

We conjecture that the corollary is also valid for all ρ in Hit2n(S) and QHit2n(S),
but for the moment we don’t have the right tools to prove it in general.

Remark 7.4. In the case n = 2, K = R, results very similar to Theorem 7.1 and
Corollary 7.3 were obtained by Baraglia [6].

Proof of Theorem 7.1. We will first prove the theorem under the additional assump-
tion that ρ is Fuchsian. The general theorem for ρ ∈ OK will then follow from this
special case: Proposition 6.6 and Theorem 4.2 give two sections of the map hol. Since,
by Lemma 3.1, the map hol is a local homeo, if the two sections coincide at a point,
they coincide on the whole OK, because OK is connected.

Now we will assume that ρ is Fuchsian. It is enough to show that SUK
∼= SMK

since the other case UK
∼=MK follows immediately. The proof consists of four steps.

Step 1: We first study the Higgs bundles for a Fuchsian representation in SL(2,R).
Our aim is to describe a trivialization given by parallel frames. The corresponding

Higgs bundle is

(
E2

C
= K

1
2 ⊕K− 1

2 ,

(
0 0√
1
2 0

))
. Denote the corresponding flat con-

nection by ∇2. We can identify the universal covering Σ̃ of Σ with the upper half
plane

H
2 = { z = x+ iy | y > 0 } .

Lift the flat bundle (E2
C

→ Σ,∇2) to
(
Ẽ2

C
→ H

2, ∇̃2
)
. With respect to the global

holomorphic frame
{
dz

1
2 , dz−

1
2

}
of Ẽ2

C
, the Hermitian metric solving Hitchin equation

is

(
h−1 0
0 h

)
for h = 1√

2y
, and the real covariant constant sections with respect to ∇̃2

are of the form

(
(az + b)e−

iπ
4 h

(az + b)e
iπ
4

)
for a, b ∈ R. Let (a, b) = (1, 0), (0, 1), we have a
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basis

e1(z) = h
1
2 (zλ−1X + zλY ), e2(z) = h

1
2 (λ−1X + λY )(23)

for λ = e
iπ
4 ,X =

(
h

1
2

0

)
, Y =

(
0

h−
1
2

)
. Then

(24) X = −h
1
2λ−1(e1(z) − ze2(z))√

2
, Y = −h

1
2λ(e1(z)− ze2(z))√

2
.

The parallel transport operator (T 2)zz0 : (Ẽ2
C
)z → (Ẽ2

C
)z0 with respect to ∇̃2 is a

linear isomorphism that takes the frame {e1(z), e2(z)} to the frame {e1(z0), e2(z0)}
respectively. This trivialization for a Fuchsian Higgs bundle for SL(2,R) was described
by Baraglia [6, Sec. 3.3]. He then used it to understand a Fuchsian Higgs bundle for
SL(3,R) and SL(4,R).

Step 2: We now apply the previous construction to a Fuchsian Higgs bundle for

SL(2n,R). The symmetric product of the Higgs bundle

(
K

1
2 ⊕K− 1

2 ,

(
0 0√
1
2 0

))

can be described as

EC = Sym2n−1
(
K

1
2 ⊕K− 1

2

)
= K

2n−1
2 ⊕K

2n−3
2 ⊕ · · · ⊕K

1−2n
2

and the induced Higgs field

φ =




0
r1 0

r2 0
. . .

. . .

r2n−1 0



,

where ri =

√
i(2n−i)

2 for 1 ≤ i ≤ 2n− 1, with respect to the basis

{σ1, σ2, · · · , σ2n}

for σk = h
2n+1−2k

2 dz
2n+1−2k

2 is a frame of K
2n+1−2k

2 whose lift to H
2, also denoted σk.

Note that σk can be identified with
(
2n−1
k−1

) 1
2X2n−kY k−1. Denote by ∇ the correspond-

ing flat connection. Again, we lift the bundle (EC → Σ,∇) to
(
ẼC → H

2, ∇̃
)

and

denote by T zz0 the associated parallel transport operator. Lift the principal bundle

P1 → Σ to P̃1 → H
2. A point in P̃1 is {σ1, · · · , σ2n}z · eiθ parametrized by (z, θ) and

P̃1 is a trivial principal U(1)-bundle. Then ẼK = P̃1 ×U(1) K
2n (note here R

2n means

Fix(τ0) ⊂ C
2n). A point in ẼK can be denoted by (z, t) for t ∈ K

2n.

Lift the fiber bundle p : C(EK) → Σ to p̃ : C(EK) ∼= P̃1×U(1)C
′
K
→ H

2, we have the

pullback bundle p̃∗(ẼK) → C(EK) with the pullback connection p̃∗∇̃. The tautological

section s : C(EK) → p∗(EK) lifts to a tautological section s̃ : C(EK) → p∗(ẼK). Since

the holonomy of the connection p̃∗∇̃ only depends on the homotopy classes of paths
in H

2, the tautological section s̃ gives rise to the π1(S)-equivariant developing map

D : C(EK) ∼= P̃1 ×U(1) C
′
K ∋ (z, t) 7−→ T

(z,t)
(z0,t0)

(s̃(z, t)) ∈ p∗(ẼK)(z0,t0).

Note that T
(z,t)
(z0,t0)

(s̃(z, t)) = p∗(T zz0(z, t)). By identifying p∗(ẼK)(z0,t0) with (ẼK)z0 , we

have D(z, t) = T zz0(z, t) ∈ (ẼK)z0 .



28 DANIELE ALESSANDRINI, COLIN DAVALO, AND QIONGLING LI

For a point (z, t) =
∑2n

k=1 tkσk ∈ C(EK), the image under the developing map D is

D

(
2n∑

k=1

tkσk

)
=

2n∑

k=1

tk · T zz0(σk)

=

2n∑

k=1

tk ·
(
2n − 1

k − 1

) 1
2

T zz0(X
2n−kY k−1)

=
2n∑

k=1

tk ·
(
2n − 1

k − 1

) 1
2(

(T 2)zz0(X)
)2n−k(

(T 2)zz0(Y )
)k−1

= −(2
√
2y)

1−2n
2

2n∑

k=1

[(
2n− 1

k − 1

) 1
2

tk(λ
−1(e1(z0)− ze2(z0)))

2n−k

·(λ(e1(z0)− z̄e2(z0)))
k−1

]
.(25)

The vector space (ẼK)z0 is isomorphic to the space of homogeneous polynomials
of e1(z0), e2(z0) of degree 2n − 1. The developing map D descends to DS : SUK

∼=
P̃1 ×U(1) SFK ∋ [(z, t)] 7→ [T zz0(z, t)] ∈ S(ẼK)z0 .

Step 3: We will first discuss the special case when K = R and n = 2. In this case,
we can directly show that DS is a diffeomorphism from SUK onto the domain SΩR.
Another argument for this fact will be given in the proof of Theorem 8.7.

It’s known that SKR contains degree 3 homogeneous polynomials containing a real
root of multiplicity ≥ 2. So SΩR is disconnected and has two connected components
Ω1,Ω2, where Ω1 consists of polynomials with three distinct real roots and Ω2 consists
of polynomials with a pair of conjugate strictly complex roots and a single real root.
Note that a real root here means it is valued in R ∪ {∞}. Observe that a polynomial
in Ω1,Ω2 is uniquely determined by its roots up to sign.

Recall SF 2
R
= { (t1, t2, t̄2, t̄1) | t1t̄2 = 0 }/R+ and hence SF 2

R
is disconnected and

has two connected components

F1 = { (e−3iθ, 0, 0, e3iθ) | θ ∈
[
0, 2π3

)
}

and

F2 = { (0, e−iθ, eiθ, 0) | θ ∈ [0, 2π) } .

Note that the action of U(1) preserves each component.

First, we will show that DS is a diffeomorphism from P̃1 ×U(1) F1 onto Ω1. For a

point e−3iθσ1 + e3iθσ4 ∈ P̃1 ×U(1) F1,

DS(e
−3iθσ1 + e3iθσ4) = −e−3iθ(λ−1(e1(z0)− ze2(z0)))

3 − e3iθ(λ(e1(z0)− z̄e2(z0)))
3.

We will use the identification between projective real roots with R ∪ {∞}: [a, 1] with
a, [b, 0] with ∞. The roots of the polynomial a1, a2, a3 are respectively

e−iθλ−1z + eiθλz̄

e−iθλ−1 + eiθλ
,
e−i

π
3 e−iθλ−1z + ei

π
3 eiθλz̄

e−i
π
3 e−iθλ−1 + ei

π
3 eiθλ

,
e−i

2π
3 e−iθλ−1z + ei

2π
3 eiθλz̄

e−i
2π
3 e−iθλ−1 + ei

2π
3 eiθλ

.

So the polynomial has three projective real roots. Suppose a1, a2, a3 ∈ R or a1 =
∞, a2, a3 ∈ R or there are at least two of a1, a2, a3 are ∞.
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For z = reiφ and let θ′ = θ + π
4 ∈ [π4 ,

11π
12 ), we will find (r, φ, θ′) solving the system

r · cos(θ
′ − φ)

cos(θ′)
= a1,(26)

r · cos(θ
′ + π

3 − φ)

cos(θ′ + π
3 )

= a2,

r · cos(θ
′ + 2π

3 − φ)

cos(θ′ + 2π
3 )

= a3,

satisfying r ≥ 0, φ ∈ (0, π) and θ′ ∈ [π4 ,
11π
12 ). Note that the polynomial given by

(r, φ, θ′ + π
3 ) is exactly the negative of the polynomial given by (r, φ, θ′). So we can

reduce to consider θ′ ∈ [π4 ,
7π
12 ).

(i) Suppose there are at least one of a1, a2, a3 are ∞, then θ′ = π
2 and the last two

equations of the system (26) are

r(cosφ− 1√
3
sinφ) = a2,

r(cosφ+
1√
3
sinφ) = a3,

which is equivalent to r cosφ = a2+a3
2 , r sinφ =

√
3(a3−a2)

2 . So a3 > a2 if and only if

r sinφ > 0, that is, z ∈ H
2.

So if z ∈ H
2, the image of DS lies in Ω1.

(ii) Suppose a1, a2, a3 ∈ R. Let ξ = tan θ′. Then the system (26) becomes

r(cosφ+ ξ sinφ) = a1,

r((1−
√
3ξ) cosφ+ (ξ +

√
3) sin φ) = a2(1−

√
3ξ),

r((1 +
√
3ξ) cosφ+ (ξ −

√
3) sin φ) = a3(1 +

√
3ξ).

Summing over the last two equations, we obtain

2r(cosφ+ ξ sinφ) = a2(1−
√
3ξ) + a3(1 +

√
3ξ).

By comparing with the first equation, we obtain

2a1 = a2(1−
√
3ξ) + a3(1 +

√
3ξ) =⇒ ξ = tan θ′ =

2a1 − (a2 + a3)√
3(a3 − a2)

.

So there exists a unique θ′ ∈ [π4 ,
7π
6 ). So 1 −

√
3ξ = 2(a3−a1)

a3−a2 and thus a3 < a2. Then
we obtain

r sinφ =
a2(1−

√
3ξ)− a1(1−

√
3)ξ

(ξ +
√
3)− ξ(1−

√
3ξ)

=
2(a2 − a1)(a3 − a1)√
3(1 + ξ2)(a3 − a2)

r cosφ = a1 − ξr sinφ.

So if z ∈ H
2, equivalently, r sinφ > 0, the roots a1, a2, a3 are distinct and thus the

image of DS lies in Ω1. Conversely, if a3 > a1 > a1, we obtain z ∈ H
2.

From the above calculation, for any polynomial P in Ω1, then there uniquely exists
a tuple (θ′, r, φ) ∈ [π4 ,

7π
12 )× (0,+∞)× (0, π) solving the system (26). So the map DS is

a bijection. Therefore, we finish proving that DS is a diffeomorphism from P̃1×U(1)F1

onto Ω1.
Next we will show that DS is a diffeomorphism from P̃1 ×U(1) F2 onto Ω2. For a

point e−iθσ2 + eiθσ3 ∈ P̃1 ×U(1) F2.

DS(e
−iθσ2 + eiθσ3) = −(e1(z0)− ze2(z0))(e1(z0)− z̄e2(z0))

·
(
e−iθ(λ−1(e1(z0)− ze2(z0))) + eiθ(λ(e1(z0)− z̄e2(z0)))

)
.
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The roots of the polynomial are

z, z̄,
e−iθλ−1z + λz̄eiθ

e−iθλ−1 + λeiθ

for z ∈ H
2. Write z = reiφ for r ∈ R≥0, φ ∈ (0, π). Suppose the projective real root is

a, then we have

r · cos(
π
4 + θ − φ)

cos(π4 + θ)
= a,

which is equivalent to θ = arctan(a−r cosφ
r sinφ )− π

4 or θ = arctan(a−r cosφ
r sinφ ) + 3π

4 . Thus we

finish proving that DS is a diffeomorphism from P̃1 ×U(1) F2 onto Ω2.

Step 4: Now, we see the general case, when K = R, n ≥ 3 or K = C, n ≥ 2. In this
case, we will also show that DS is a diffeomorphism onto the domain SΩK. The proof
relies on Lemma 7.5 and Proposition 7.7, proved in the following.

By Lemma 7.5, we obtain DS((SUK)z=i)∩SKK = ∅. By the SL(2,R)-equivariance
of the developing map DS in Proposition 7.7 and the SL(2,R)-invariance of the subset
SKK, we obtain that DS(SUK) ∩ SKK = ∅. Hence DS(SUK) ⊂ SΩK. Now we are
going to show that they are in fact equal.

Since the developing map DS : SUK → SΩK is π1(S)-equivariant, therefore it de-
scends to a map, denoted DS : SUK → SMK, which is again a local diffeomorphism.
Both SUK and SMK are compact, implying that DS is proper. Therefore DS is a
covering map and so is DS.

For K = C and n ≥ 2, SKC = S
4n−1 \ SΩC is of codimension 2n − 1 ≥ 3, hence

π1(SΩC) = 1. From Section 10, π1(SUC) = π1(SF
n
C
) = π1(SF

2n
R

) = 1.
For K = R and n ≥ 4, SKR = S

2n−1 \ SΩR is of codimension n − 1 ≥ 3, hence
π1(SΩR) = 1. From Section 10, if n ≥ 4, π1(SUR) = π1(SF

n
R
) = 1.

For K = R and n = 3, we have π1(SΩR) = Z2 following from the proof of Theorem
11.3 in [17]. From Section 10, π1(SUR) = π1(SF

3
R
) = Z2.

By comparing the fundamental groups of SUK and SΩK, we obtain DS is indeed a
diffeomorphism from SUK onto SΩK. Hence DS is a diffeomorphism from SUK onto
SMK. �

Lemma 7.5. DS((SUK)z=i) ∩ SKK = ∅.
Proof. The proof relies on Lemma 8.8, proved in the next section. Up to a scalar of
R
+, for z = i, the polynomial P in Equation (25) is

P =

2n∑

k=1

(
2n− 1

k

) 1
2

tke
i(2k−2n−1)π

4 (e1(z0)− ie2(z0))
2n−k(e1(z0) + ie2(z0))

k−1

=

2n−1∑

k=0

(
2n− 1

k

) 1
2

t2n−ke
i(2n−2k−1)π

4 (e1(z0)− ie2(z0))
k(e1(z0) + ie2(z0))

2n−k−1.

We use the notation Z = 1
2(e1(z0) − ie2(z0)),W = 1

2(e1(z0) + ie2(z0)). Then up to a
scalar of R+,

P =
2n−1∑

k=0

(
2n− 1

k

) 1
2

t2n−ke
i(2n−2k−1)π

4 ZkW 2n−1−k.

Set sk = t2n−ke
i(2n−2k−1)π

4 . Then sk’s satisfy
∑n−1

k=0 s2ks2k+1 = i ·∑n−1
k=0 t2kt2k+1 = 0.

Set pk =
(
2n−1
k

) 1
2 sk, then the polynomial can be written as

P =
2n−1∑

k=0

pkZ
kW 2n−1−k .
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In order to relate this notation with the notation in Section 8, the X,Y of Section
8 correspond to e1(z0), e2(z0) here, and the Z,W of Section 8 correspond to the the
Z,W defined here.

Thus the equation for sk implies that P ∈ Cλ
K
for λ as in Lemma 8.6:

0 =

n−1∑

k=0

s2ks2k+1 =

n−1∑

k=0

(
2n− 1

2k

)− 1
2
(
2n− 1

2k + 1

)− 1
2

p2kp2k+1 = qλ(P,P ) .

The statement then follows from Lemma 8.8. �

7.2. SL(2,R)-equivariance of the developing maps. The group SL(2,R) acts on
H

2 by the Möbius transformation. It induces a natural left action of SL(2,R) on the
canonical line bundle K on H

2: for a differential form w ∈ Kz, γ ∈ SL(2,R),

γ · w := (γ−1)∗(w) ∈ Kγ(z) .

Then it induces a natural left action of SL(2,R) on K
1
2 ,K− 1

2 , the frame bundle P̃1

and P̃1×U(1)K
2n ∼= ẼK. So the fiber of SUK at i is mapped to the fiber of SUK at γ · i

under the action of γ.

Lemma 7.6. For γ =

(
a b
c d

)
∈ SL(2,R) and the frame ez′ = h(z)

1
2 (dz)

1
2
z′ of K

1
2 , we

have

(γ−1)∗(ez′) = eγ(z′) ·
cz′ + d

|cz′ + d| .

Proof. We recall the fact h(z) = 1√
2y
, γ′(z) = (cz + d)−2, Im(γ(z)) = y

|cz+d|2 . Then

(γ−1)∗
(
h(z′)

1
2 (dz)

1
2
z′

)
= h(z′)

1
2 · (γ′(z))−

1
2

z′ · (dz)
1
2

γ(z′)

=
(√

2y′
)− 1

2 · (cz′ + d) · (dz)
1
2

γ(z′)

=

(√
2 · y′

|cz′ + d|2
)− 1

2

· cz
′ + d

|cz′ + d| · (dz)
1
2

γ(z′)

=
(√

2 · Im(γ(z′))
)− 1

2 · cz
′ + d

|cz′ + d| · (dz)
1
2

γ(z′). �

Proposition 7.7. By identifying (ẼK)z0 with K
2n, the developing maps D : C(EK) →

K
2n, DS : SUK → S(K2n) and DP : UK → KP

2n−1 are SL(2,R)-equivariant, that is,
for γ ∈ SL(2,R),

D(γ · p) = γ ·D(p), DS(γ · p) = γ ·DS(p), DP(γ · p) = γ ·DP(p) .

Proof. It is enough to show the equivariance of the map D. First,

(T 2)zz0(X) = (T 2)zz0(λ
−1

√
2
−1
h(z)

1
2 (e1(z)− ze2(z))

= λ−1
√
2
−1
h(z)

1
2 (e1(z0)− e2(z0))

=
(
e1(z0) e2(z0)

)
· λ−1

√
2
−1
h(z)

1
2

(
1
−z

)
.
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Let γ =

(
a b
c d

)
. By Lemma 7.6, γ ·X = X · eiθγ,z and γ · Y = Y · e−iθγ,z , then

(T 2)γ(z)z0
(γ ·X) = (T 2)γ(z)z0

(X · eiθγ,z )
= (T 2)γ(z)z0

(λ−1
√
2
−1
h(γ(z))

1
2 eiθγ,z(e1(γ(z)) − γ(z)e2(γ(z)))

= λ−1
√
2
−1
h(γ(z))

1
2
cz + d

|cz + d| (e1(z0)− γ(z)e2(z0))

=
(
e1(z0) e2(z0)

)
· (cz + d)λ−1

√
2
−1
h(z)

1
2

(
1

−γ(z)

)

=
(
e1(z0) e2(z0)

)
· λ−1

√
2
−1
h(z)

1
2

(
cz + d
−az − b

)

=
(
e1(z0) e2(z0)

)
· (γ−1)t ·

(
λ−1

√
2
−1
h(z)

1
2

(
1
−z

))
.

We carry out similar computation for Y and obtain

(
(T 2)zz0(X) (T 2)zz0(Y )

)
=
(
e1(z0) e2(z0)

)
·M(z),

(
(T 2)

γ(z)
z0 (eiθγ,zX) (T 2)

γ(z)
z0 (e−iθγ,zY )

)
=
(
e1(z0) e2(z0)

)
· (γt)−1 ·M(z),

for M(z) =
√
2
−1
h(z)

1
2 ·
(

λ−1 λ
−λ−1z −λz̄

)
.

Suppose (U, V ) is a frame of (ẼK)z0 satisfying

(
U V

)
=
(
e1(z0) e2(z0)

)
·A, A ∈ SL(2,C),

denote by τ : SL(2,C) → SL(2n,C) the induced representation such that

(
U2n−1 U2n−2V · · · V 2n−1

)

=
(
e1(z0)

2n−1 e1(z0)
2n−2e2(z0) · · · e2(z0)

2n−1
)
· τ(A).

Consider the map D : P̃1 ×U(1) K
2n ∼= ẼK ∋ (z, ~u) → T zz0(z, ~u) ∈ (ẼK)z0 .

Let ~u =




u1
u2
...
u2n


 and ~u′ =




√
C0
2n−1u1√

C1
2n−1u2
...√

C2n−1
2n−1u2n



. So

D((z, ~u)) = T zz0(

2n∑

i=1

ui

√
Ci−1
2n−1X

2n−iY i−1)

=

2n∑

i=1

ui

√
Ci−1
2n−1(T

2)zz0(X)2n−i(T 2)zz0(Y )i−1

=
(
e1(z0)

2n−1 e1(z0)
2n−2e2(z0) · · · e2(z0)

2n−1
)
· τ(M(z)) · ~u′,
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and since the SL(2,R) action on P̃ ×U(1) K
2n is γ · (z, ~u) = (γ(z), eθγ,z · ~u),

D(γ · (z, ~u)) = D([(γ(z), eθγ,z · ~u)])

= T γ(z)z0
(

2n∑

i=1

ui ·
√
Ci−1
2n−1 · (eiθγ,zX)2n−i · (e−iθγ,zY )i−1)

=
2n∑

i=1

ui

√
Ci−1
2n−1(T

2)γ(z)z0
(eiθγ,z′X)2n−i(T 2)γ(z

′)
z0

(e−iθγ,z′Y )i−1

=
(
e1(z0)

2n−1 e1(z0)
2n−2e2(z0) · · · e2(z0)

2n−1
)
· τ((γt)−1 ·M(z)) · ~u′

= γ ·D(z, ~u).

The last equality follows from the following: for a polynomial P of e1(z0), e2(z0),

γ · P (e1(z0), e2(z0)) = P

(
γ−1 ·

(
e1(z0)
e2(z0)

))
= P ((e1(z0), e2(z0)) · (γt)−1). �

8. Geometric description of the fibration

In this section we are using again the notation introduced in Section 4.2, in partic-
ular, VK will be the space K

(2n−1)[X,Y ] of homogeneous polynomials in two variables
X,Y of degree 2n− 1.

We will now consider two new variables W,Z defined as

W = 1
2(X + iY ), Z = 1

2(X − iY ) .

In reverse, we have X = Z +W and Y = i(Z −W ). We can now identify VC with

C
(2n−1)[Z,W ], and VR with the subspace

{ P ∈ C
(2n−1)[Z,W ] | P (Z,W ) = P (W,Z) } .

The real form on VC of which VR is the real locus is the form:

τ : VC ∋
2n−1∑

k=0

pkZ
kW 2n−1−k 7−→

2n−1∑

k=0

p2n−1−kZ
kW 2n−1−k ∈ VC .

Consider the action of SO(2) on C
(2n−1)[Z,W ] such that for θ ∈ R,

Rθ · Z = Zeiθ, Rθ ·W =We−iθ .

Recall that Rθ is the rotation of angle θ defined in (5). This action preserves VR,
and corresponds in the variables X,Y to the action of SO(2) on VC or VR defined by :

Rθ ·X = Rθ · (Z +W ) = cos(θ)X + sin(θ)Y = X ◦R−1
θ ,

Rθ · Y = Rθ · (Z +W ) = cos(θ)Y − sin(θ)X = Y ◦R−1
θ .

This action of SO(2) on VK is the restriction to SO(2) of the action defined in (2)
on SL(2,R), i.e. to the irreducible representation ῑ : SL(2,R) → SL(2n,K).

8.1. Definition of an invariant quadratic form. Let λ = (λ0, · · · , λn−1) ∈ R
n
>0.

Define on VC a symmetric R-bilinear form qλ, taking values in C, by

(27) qλ(P,Q) =
1

2

n−1∑

k=0

λkp2kq2k+1 + λkq2kp2k+1 ,

where

P =

2n−1∑

k=0

pkZ
kW 2n−1−k, Q =

2n−1∑

k=0

qkZ
kW 2n−1−k ,

and for 0 ≤ k ≤ 2n − 1, pk, qk ∈ C.
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We define Cλ
K

= { P ∈ VK | qλ(P,P ) = 0 }. For any λ ∈ R
n
>0, this set can be

identified with C ′
K
via some linear isomorphism VK → K

2n.

Lemma 8.1. Let θ ∈ R, and P,Q ∈ VC, then

qλ(Rθ · P,Rθ ·Q) = e2iθqλ(P,Q).

In particular, Cλ
K
is SO(2)-invariant.

Proof. Let P,Q ∈ VC be two polynomials, and let us write them as

P =

2n−1∑

k=0

pkZ
kW 2n−1−k, Q =

2n−1∑

k=0

qkZ
kW 2n−1−k,

where for 0 ≤ k ≤ 2n− 1, pk, qk ∈ C. The polynomials Rθ ·P and Rθ ·Q hence can be
written as

P =

2n−1∑

k=0

pke
(2n−1−2k)iθZkW 2n−1−k, Q =

2n−1∑

k=0

qke
(2n−1−2k)iθZkW 2n−1−k.

Therefore one can compute qλ(Rθ · P,Rθ ·Q):

qλ(Rθ · P,Rθ ·Q) =
1

2

n−1∑

k=0

λkp2kq2k+1e
(2n−1−4k−(2n−1−4k−2))iθ

+
1

2

n−1∑

k=0

λkq2kp2k+1e
(2n−1−4k−(2n−1−4k−2))iθ ,

(28)

which implies the statement. �

8.2. Action of a diagonal element. The action of SL(2,R) on the algebra C[X,Y ]
defined in (2) restricts, for every n, to an action on the homogeneous component

C
(n)[X,Y ]. This restriction gives an irreducible representation

SL(2,R) −→ SL(n,C) .

The differential of this map at the identity is a Lie algebra representation

sl(2,R) −→ sl(n,C) .

We identify sl(n,C) with the Lie algebra of traceless endomorphisms End0(C
(n)[X,Y ]).

When we put all these representations together, we get a linear action of sl(2,R) on
the algebra of polynomials C[X,Y ]. For an element r ∈ sl(2,R), and P ∈ C[X,Y ], we
will denote by r · P the action by this representation. This action does not preserve
the product of polynomials, it is, instead a derivation:

Lemma 8.2. For all r ∈ sl(2,R), the map

C[X,Y ] ∋ P 7−→ r · P ∈ C[X,Y ]

is a derivation, i.e.

r · (PQ) = (r · P )Q+ P (r ·Q) .

Proof. The action of SL(2,R) on C[X,Y ] preserves the product: for all g ∈ SL(2,R),
we have g(PQ) = g(P )g(Q). Now let’s consider the elements etr ∈ SL(2,R). We have

etr(PQ) = etr(P )etr(Q) .

Now

r · (PQ) =
d

dt
etr(PQ) =

d

dt

(
etr(P )etr(Q)

)
= (r · P )Q+ P (r ·Q) .

�
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This representation is compatible with the action of SL(2,R) in the sense that for
g ∈ SL(2,R) and h ∈ sl2(R), the action of Adg(h) is the conjugate of the action of h
by the action of g. Moreover R[X,Y ] is preserved by this representation.

For t ∈ R, we define

gt =

(
e−t 0
0 et

)
∈ SL(2,R) .

g0 =

(
−1 0
0 1

)
∈ sl(2,R) .

Note that g0 is the differential of t 7→ gt at t = 0. Let P be an element of VC, then
g0 · P = d

dt |t=0
gt · P .

Lemma 8.3. Let P ∈ VC, then g0 · P = ∂P
∂X
X − ∂P

∂Y
Y . Moreover, after the change of

variables, g0 · P = ∂P
∂Z
W + ∂P

∂W
Z.

Proof. The map which to P associate ∂P
∂X
X − ∂P

∂Y
Y and ∂P

∂Z
W + ∂P

∂W
Z are derivations.

Hence it is sufficient to check that they coincide with P 7→ g0 · P on a generating set
of the algebra of homogenous polynomials.

One can check it for the first fomula : g0 · X = X = ∂X
∂X
X − ∂X

∂Y
Y and g0 · Y =

−Y = ∂Y
∂X
X − ∂Y

∂Y
Y .

As for the second formula, we have

∂(Z +W )

∂Z
W +

∂(Z +W )

∂W
Z = Z +W ,

∂i(Z −W )

∂Z
W +

∂i(Z −W )

∂W
Z = i(W − Z) ,

and the proof is finished. �

Recall that Cλ
K
= { P ∈ VK | qλ(P,P ) = 0 }. Given a point P ∈ Cλ

K
, the tangent

space to Cλ
K
at P is given by the linear equation

TPC
λ
K = { Q ∈ VK | qλ(P,Q) = 0 } .

Definition 8.4. We will say that an element λ = (λ0, · · · , λn−1) ∈ R
n
>0 such that λi =

λn−i for 1 ≤ i < n is transverse to g0 if for all P ∈ VC \{0}, then Re(qλ(P,g0 ·P )) > 0

We now are going to show that a special choice of λ is indeed transverse to g0.

Lemma 8.5. Let λ = (λ0, · · · , λn−1) ∈ R
n
>0 be such that λi = λn−i for 1 ≤ i < n . If

Re(qλ(P,g0 · P )) > 0 for any P ∈ VR \ {0}, then this also holds for any P ∈ VC \ {0}.
Proof. Let P ∈ VC \0. This polynomial can be written as P = A+iB, with A,B ∈ VR,
(A,B) 6= (0, 0). Thus

qλ(P,g0 · P ) = qλ(A,g0 ·A) + qλ(iB,g0 · iB) + qλ(A,g0 · iB) + qλ(iB,g0 ·A).
But Re (qλ(A,g0 · A)) > 0, Re (qλ(iB, ig0 · B)) > 0, and

Re (qλ(A, ig0 · B)) = Re (qλ(iB,g0 · A)) = 0.

Indeed one can write

A =

2n−1∑

k=0

akZ
kW 2n−1−k, g0 · B =

2n−1∑

k=0

bkZ
kW 2n−1−k,

where for 0 ≤ k ≤ 2n− 1, ak, bk ∈ C and ak = a2n−1−k, bk = b2n−1−k. Then

Re (qλ(A, ig0 · B)) =
1

2

n−1∑

k=0

(−i)λka2kb2k+1 + iλkb2ka2k+1 = 0.

And the same holds for Re (qλ(B, ig0 · A)). Hence Re(qλ(P,g0 · P )) > 0. �
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Assume we are in the special case where for 0 ≤ k ≤ n − 1, λk = λn−1−k. We will
write a P ∈ VR as

P =
2n−1∑

k=0

pkZ
kW 2n−1−k ,

where for 1 ≤ k ≤ 2n− 1, pk ∈ C and pk = p2n−1−k. Let us compute g0 · P :

g0 · P =

2n−1∑

k=0

((k + 1)pk+1 + pk−1(2n − k))ZkW 2n−1−k .

Hence

(29) qλ(P,g0 · P ) =
n−1∑

k=0

λk((2n − 2k − 1)p2kp2k + (2k + 2)p2kp2k+2) .

Lemma 8.6. Suppose λ is defined in the following way: for 0 ≤ k ≤ n− 1,

λk =

(
2n− 1

2k

)− 1
2
(
2n − 1

2k + 1

)− 1
2

.

Then λ is transverse to g0.

Proof. Chose bk and ck for 0 ≤ k < n as follows:

b2k = (2n − 2k − 1)(2n − 2k) · 2k

2k + 1
, c2k = (2n − 2k − 2)(2n − 2k − 1) · 2k + 2

2k + 1
.

Theses parameters satisfy two inequalities. Firstly,

2(2n − 1− 2k)2 − (b2k + c2k)

=
2n− 2k − 1

2k + 1
[2(2n − 2k − 1)(2k + 1)− (2n − 2k)(2k) − (2n − 2k − 2)(2k + 2)]

=
2(2n − 2k − 1)

2k + 1
> 0.

Hence 2n− 2k − 1 >

√
b2k+c

2
k

2 ≥ bk+ck
2 , which proves:

(30) 2n− 2k − 1 ≥ 1

2
(bk + ck).

Secondly, since

λ2k+1

λ2k
=

(2n−1
2k

)(2n−1
2k+1

)
(2n−1
2k+2

)(2n−1
2n+3

) =
(2k + 1)(2k + 2)2(2k + 3)

(2n− 2k − 2)(2n − 2k − 3)2(2n − 2k − 4)
,

(2k + 2)4

b2k+1c
2
k

=
(2k + 2)4

[(2n − 2k − 3)(2n − 2k − 2) · 2k+2
2k+3 ][(2n − 2k − 2)(2n − 2k − 1) · 2k+2

2k+1 ]

=
(2k + 1)(2k + 2)2(2k + 3)

(2n− 2k − 1)(2n − 2k − 2)2(2n − 2k − 3)
.

Hence one has :

(31)
λ2k+1

λ2k
>

(2k + 2)4

b2k+1c
2
k

.
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By Lemma 8.5 we can assume that P ∈ VR. Using (29) and (30), one gets:

Re(qλ(P,g0 · P ))

≥
n−1∑

k=0

1

2
λk(bk + ck)p2kp2k − λk(2k + 2)|p2k||p2k+2|

≥
n−2∑

k=0

1

2
(λk+1bk+1|p2k+2|2 + λkck|p2k|2)− λk(2k + 2)|p2k||p2k+2|

≥
n−2∑

k=0

(
√
λkλk+1bk+1ck − λk(2k + 2))|p2k||p2k+2|

=
n−2∑

k=0

(

√
λk+1

λk
− 2k + 2√

bk+1ck
)
√
bk+1ckλk|p2k||p2k+2|.

Since bk, ck satisfy (31),
√

λk+1

λk
− 2k+2√

bk+1ck
> 0 and therefore Re(qλ(P,g0 · P )) ≥ 0;

equality holds if and only if p2kp2k+2 = 0 and λk+1bk+1|p2k+2| = λkck|p2k| for 0 ≤
k ≤ n − 2, together with the condition pk = p2n−1−k for 0 ≤ k ≤ 2n − 1, we have
P = 0. �

8.3. Construction of the fibration. Let F λ
K

= P(Cλ
K
) and SF λ

K
= S(Cλ

K
) be the

projectivization in P(VK) of C
λ
K
and the associated set in the sphere S(VK).

Let Ũλ
K

be the bundle associated to the SO(2)-principal bundle T 1
H

2 defined by

the action of SO(2) on F λ
K
. One can describe it as is the quotient of PSL(2,R)× F λ

K

by the action of SO(2) defined by r · (g, f) = (g ◦ r, r−1 · f) for r ∈ SO(2) and
(g, f) ∈ PSL(2,R)× F λ

K
.

Let similarly SŨλ
K

bundle associated to the SO(2)-principal bundle T 1
H

2 defined

by the action of SO(2) on SF λ
K
.

The bunldes Ũλ
K
and SŨλ

K
are diffeomorphic to S2 × F λ

K
and S2 × SF λ

K
respectively,

with S2 ≃ H
2 the space of symmetric elements of PSL(2,R).

Let us define the map φ0 : PSL(2,R) × F λ
K
→ P(VK) which to an element (g, f) ∈

PSL(2,R) × F λ
K
associates g · f . This defines a map on the quotient φ : Ũλ

K
→ P(VK).

We can define in the same way a map Sφ : SŨλ
K
→ S(VK).

Let ρ be a Fuchsian representation into PSL2n(R). It can be written ι◦ρ0 for some
Fuchsian representation ρ0 into PSL(2,R). Recall that ΩK, KK, SΩK and SKK were

defined in Section 4. Let Uλ
K
be the quotient of Ũλ

K
by the action defined by ρ0, and

SUλ
K
be the quotient of SŨλ

K
.

Theorem 8.7. Suppose that λ is transverse to g0. Then the map φ induces a diffeo-
morphism between Ũλ

K
and the domain of discontinuity ΩK. The map Sφ induces a

diffeomorphism between SŨλ
K
and SΩK.

These diffeomorphisms are PSL(2,R)-equivariant. In particular the quotient MK

of ΩK by the action of ρ is homeomorphic to Uλ
K

which is a fibration over Sg, whose
fiber is the Stiefel manifold Fn

K
described in Section 5. Similarly the quotient SMK of

SΩK by the action of ρ is homeomorphic to SUλ
K
.

Two intermediate lemmas are necessary to prove this theorem.

Lemma 8.8. Suppose that λ is transverse to g0. Then

KK ∩ F λK = ∅, SKK ∩ SF λK = ∅, .
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Proof. Consider an element P ∈ Cλ
K
\ {0}. Let f be the function t ∈ R 7→ Re(qλ(gt ·

P, gt · P )). For t ∈ R, the derivative

f ′(t) = 2Re (qλ(gt · P,g0 · (gt · P )))
is strictly positive because of transversality. Hence f is strictly increasing. Since
f(0) = 0 then for all t < 0, f(t) < 0.

However on P(VK), the line [gt · P ] converges when t tends to −∞ towards the line
[XaY 2n−1−a] for some 0 ≤ a ≤ 2n− 1. One can deduce that Re(qλ) is non-positive on
[XaY 2n−1−a]. By transversality of λ, we have:

Re(qλ(X
aY 2n−1−a,g0 ·XaY 2n−1−a)) > 0.

Since one has g0 · XaY 2n−1−a = (2a − 2n + 1)XaY 2n−1−a, the quadratic form
Re(qλ) has the same sign as 1

2a−2n+1 on the line [XaY 2n−1−a]. Since this form has to
be non-positive, therefore 2a− 2n+ 1 ≤ 0, and hence a < n.

But a ≥ n if and only if P admits [X,Y ] = [0, 1] as a root of multiplicity ≥ n.
Moreover since F λ

K
= P(Cλ

K
) and SF λ

K
= S(Cλ

K
) are SO(2)-invariant, then KK∩F λK = ∅

and SKK ∩ SF λ
K
= ∅. �

From now on, in order to prove Theorem 8.7 we consider only the projective case.
The proof in the spherical case is similar.

Lemma 8.9. The map φ is a local diffeomorphism.

Proof. Consider some (Id, [f0]) ∈ Ũλ
K

≃ S2 × F λ
K

and (g, f) ∈ T(Id,[f0])Ũ
λ
K

such that

T(Id,[f0])φ(g, f) = 0. Since g is symmetric, there exists r ∈ PSO(2) and ℓ ∈ R
+ such

that g = ℓ× rg0r
−1. Then

T(Id,[f0])φ(g, f) = ℓ× (rg0r
−1 · f0) + f .

Hence since f ∈ T[f0]F
λ
K
, then ℓrg0(r

−1 · f0) also belongs to T[f0]F
λ
K
. However, by

transversality, qλ(g0 · (r−1 · f0), r−1 · f0) 6= 0 since its real part is strictly positive.
Therefore g0(r

−1 · f0) /∈ Tr−1·[f0]F
λ
K
.

Since Cλ
K
is SO(2)-invariant, then

rg0(r
−1 · f0) /∈ T[f0]F

λ
K.

Hence ℓ = 0, and therefore f = 0. Consequently T(Id,[f0])φ is injective between
spaces of the same dimension, that is 2n − 1 if K = R and 4n − 2 if K = C. Hence φ
is a local diffeomorphism in a neighborhood of any point of MK of the form (Id, [f0]).

Let g ∈ PSL(2,R) and [f0] ∈ F λ
K
, g−1 · φ(g, [f0]) = φ(Id, [f0]), Hence φ is a local

diffeomorphism on the whole space Ũλ
K
. �

We can now show Theorem 8.7.

Proof of Theorem 8.7. Suppose [g1, f1], [g2, f2] ∈ Ũλ
K

satisfy φ([g1, f1]) = φ([g2, f2]).

Then let us denote h = g−1
2 g1, so that h ·f1 = f2. Up to choosing adequate representa-

tives of [g1, f1] and [g2, f2], one can assume that h = gt for some t ≥ 0. But in this case
if t 6= 0, the transversality of λ implies that 0 = Re(qλ(f2, f2)) > Re(qλ(f1, f1)) = 0.
Therefore t = 0, and consequently g1 = g2 and f1 = f2, that is, φ is injective.

The map φ is a local diffeomorphism. Hence φ is an open map.
Since ρ comes from a Fuchsian representation, Uλ

K
is compact. Hence its image by

φ in the compact MK is compact, and in particular closed. The image of Ũλ
K
by φ is

PSL(2,R)-invariant, therefore it is closed in P(VK) \KK. Hence φ is a closed map.
For n ≥ 3 and K = R, or n ≥ 2 and K = C, the space ΩK is connected, so φ which

is open and closed must be subjective. For n = 2, and K = R, F λ
K
has two connected

component, and ΩK has also two connected components. Since φ is injective open and
closed, it must be surjective. In both cases φ is surjective.
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Hence φ is a PSL(2,R)-invariant diffeomorphism. Moreover Uλ
K
is a fibration over

S2 ≃ H
2 whose fibers are diffeomorphic to F λ

K
. The space F λ

K
is a standard projective

embedding of the projective Stiefel manifold. �

9. Comparison with the diagonal representation

Let ρ0 : π1(S) → SL(2,R) be a Fuchsian representation, and consider the diagonal
embedding of SL(2,R) into SL(2n,R), with (n ≥ 2). This induces the following
representation, that we will call a diagonal representation:

ρ = diag(ρ0, · · · , ρ0) : π1(S) → SL(2n,R) .

In this section, we apply to ρ the construction of domains of discontinuity given
by Guichard and Wienhard [17] and outlined in Section 4.1. We explicitly describe
domains ΩK ⊂ KP

2n−1, SΩK ⊂ S(K2n) such that ρ acts on ΩK, SΩK properly discon-
tinuously, freely and co-compactly. We then describe the quotient manifolds

WK := ρ(π1(S))\ΩK, SWK := ρ(π1(S))\SΩK .

as fiber bundles over S. We will then show that these manifolds are often homeomor-
phic to the manifolds SMK, MK obtained from a Hitchin or quasi-Hitchin representa-
tion.

9.1. The diagonal representation. The vector space K
2n is isomorphic to the ten-

sor product Kn ⊗ K
2. We see the elements of this tensor products as n × 2 matrices,

and multiply them using the usual matrix multiplication. We denote the isomorphism
by

η : Kn ⊗K
2 ∋ (v,w) =




v1 w1

v2 w2
...

...
vn wn


 7−→




v1
w1

v2
w2
...
wn




∈ K
2n .

There is a natural left action of SL(n,K)× SL(2,K) on K
n ⊗K

2 defined by:

(SL(n,K)× SL(2,K)) ×K
n ⊗K

2 ∋ (U, V ) · A 7−→ UAV −1 ∈ K
n ⊗K

2 .(32)

Using this action, the diagonal representation can be identified with the represen-
tation

ρ : π1(S) ∋ γ −→ (Id, ρ0(γ)) ∈ SL(n,K)× SL(2,K) ⊂ SL(2n,K) .

For this, we need to use the fact that an SL(2,R)-representation ρ0 is conjugate to
its dual representation ρ∗0. We will use the notation ρ = (Id, ρ0).

Proposition 9.1. Let ρ = (Id, ρ0) be a diagonal representation. Then there exist
domains ΩK ⊂ KP

2n−1 and SΩK ⊂ S(K2n) such that ρ acts on ΩK and SΩK properly
discontinuously, freely and co-compactly.

Moreover, the quotient manifolds SWK and WK are homeomorphic to fiber bundles
over S = ρ0(π1(S))\H2 with fiber SFK and FK respectively, structure group U(1) with
action given by the geodesic flow δ as in (4) and Euler class g − 1.

Remark 9.2. As in Remark 6.1, the U(1)-action on FK is not effective, the subgroup
{±1} acts trivially. We have an effective action on FK of the quotient group U(1)/{±1},
that is still isomorphic to U(1). We will always consider WK as a U(1)-bundle with
reference to this new structure group, and we notice that, with this new group, the
bundle WK has Euler class 2g − 2.
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Proof. Denote by Sym2×2(R) the space of real symmetric 2 × 2 matrices. Denote by
SSym2×2(R) the spherical quotient, i.e. the quotient by multiplication by R>0. We
identify H

2 with the open subset of SSym2×2(R) consisting of equivalence classes of
positive definite symmetric 2× 2 matrices. In this model, the isometries of H2 can be
seen via the following left action of SL(2,R) on Sym2×2(R) that preserves H2:

SL(2,R)× Sym2×2(R) ∋ (g,B) 7−→ g · B = (g−1)TBg−1 ∈ Sym2×2(R) .

We now want to define a projection to H
2. Consider the map h defined by:

h : K
n ⊗K

2 ∋ A 7−→ Re(A
T
A) ∈ Sym2×2(R) .

The element h(A) is always a positive semi-definite symmetric matrix, and it is
positive definite if and only if A has full rank. Moreover, the projection h is equivariant
with respect to the action of SL(2,R): for A ∈ K

n ⊗K
2 and g ∈ SL(2,R),

h((Id, g) · A) = h(Ag−1) = Re(Ag−1
T
(Ag−1)) = (g−1)TRe(A

T
A)g−1

= (g−1)Th(A)g−1 = g · h(A).

The map h descends to the projectivized maps:

hP : P(Kn ⊗K
2) −→ SSym2×2(R), hS : S(Kn ⊗K

2) −→ SSym2×2(R) .

We define the following subsets of P(Kn ⊗K
2) and S(Kn ⊗K

2):

ΩK = { [A]P ∈ P(Kn ⊗K
2) | A is of rank 2 } ,

SΩK = { [A]S ∈ S(Kn ⊗K
2) | A is of rank 2 } .

We then have the restricted maps hP|ΩK
: ΩK → H

2 and hS|SΩK
: SΩK → H

2 respec-
tively.

Since the action of SL(2,R) on H
2 is transitive, the restricted projections hS|SΩK

and hP|ΩK
are surjective onto H

2.
Next we that hS|SΩK

and hP|ΩK
are fiber bundles over H2 with fiber SFK, FK respec-

tively. By the transitivity of the action of SL(2,R), it is enough to understand the
pre-image of the identity matrix [Id] in H

2. The equation for A ∈ K
n ⊗ K

2 to be in
this fiber is

Re
(
A
T
A
)
= Id ,

equivalently, writing A = (v,w),

(33) Re(〈v,w〉) = 0, 〈v, v〉 = 〈w,w〉 .

Comparing with the definition of SFK in Section 5.1, we see that h−1
S

(Id) coincides with

SFK and moreover h−1
S

(g · Id) coincides with (Id, g) · SFK for g ∈ SL(2,R). Similarly,

h−1
P

(g · Id) coincides with (Id, g) · FK, for g ∈ SL(2,R).
We consider SL(2,R) as a principal U(1)-bundle over H

2. The associated fiber
bundle over H2 with fiber SFK is SL(2,R) ×δ SFK. We define the following map

Ψ : SL(2,R) ×δ SFK ∋ [(g,A)] 7−→ (Id, g) · A ∈ SΩK.

The map Ψ is well-defined since for any U ∈ SO(2), (gU,AU) also maps to Ag−1.
Since Ψ takes the fiber at g · Id of SL(2,R) ×δ SFK to the fiber at g · Id of SΩK, it
is a bundle isomorphism between fiber bundles over H

2 with fiber SFK. Passing to
the quotient space by the action of π1(S), the fibration hS descends to a fibration
hS : SWK → S with fiber SFK and hP descends to a fibration hP : WK → S with fiber
FK. �
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9.2. Comparison with a Hitchin representations. We would like to compare the
topology of the manifolds SWK and WK with the topology of the manifolds SMK and
MK constructed from a Fuchsian representation. As fiber bundles over S, they have
the same fibers and same Euler class, but they have different structure groups: the
structure group of SWK and WK is given by the geodesic flow δ from (4), while the
structure group of SUK and UK is given by the representation φ from (7).

Proposition 9.3. As topological bundles over S, we have the following isomorphisms.

(1) For n ≥ 3, MR
∼=WR;

(2) For n ≥ 2, MC
∼=WC;

(3) For n ≥ 3 and the genus g of S is odd, SMR
∼= SWR;

(4) For n ≥ 2 and the genus g of S is odd, SMC
∼= SWC.

Proof. We saw in Theorem 7.1 that SMK and MK are homeomorphic to SUK and UK

respectively. By definition,

SUK
∼= P ′ ×φ′ SF

′
K, UK

∼= P ×φ′ F
′
K ,

where P ′, P are principal U(1)-bundle on S, with Euler number g − 1 and 2g − 2
respectively. By Lemma 5.3, using the identification between SFK and FK, we have

SUK
∼= P ′ ×φ SFK, UK

∼= P ×φ FK ,

Similarly, we saw in Proposition 9.1 that

SVK ∼= P ′ ×δ SFK, VK ∼= P ×δ FK .

The proposition then follows from the following Lemma 9.4. �

Lemma 9.4. As topological bundles over S, we have the following isomorphisms.

(1) For every n ≥ 3, P ×φ FR
∼= P ×δ FR;

(2) For every n ≥ 2, P ×φ FC
∼= P ×δ FC;

(3) For every n ≥ 3 and the genus g of S is odd, P ′ ×φ SFR
∼= P ′ ×δ SFR;

(4) For every n ≥ 2 and the genus g of S is odd, P ′ ×φ SFC
∼= P ′ ×δ SF

n
C
.

Proof. Recall that φ and δ are representations from U(1) to SO(n) × SO(2) defined
by (4) and (7). The projections on the two factors are (Lθ, Rθ) for φ, and (Id, Rθ) for
δ. Then, we have Since φ = (φ1, φ2), we can see that

P ×φ (SO(n)× SO(2)) = (P ×Lθ
SO(n))×S (P ×Rθ

SO(2)) .

P ×δ (SO(n)× SO(2)) = (P ×Id SO(n))×S (P ×Rθ
SO(2)) .

We will just need to prove that, under our hypothesis, the bundle P ×Lθ
SO(n) is

trivial as a principal SO(n)-bundle. For n ≥ 3, principal SO(n)-bundles over a closed
Riemann surface are classified by their second Stiefel-Whitney class w2 ∈ H2(S,Z2) =
Z2, which is the reduction modulo 2 of the Euler class. So w2(P ) = 0 since its Euler
class as a U(1)-bundle is 2g − 2. Hence P ×Lθ

SO(n) is trivial as a principal SO(n)-
bundle. Hence

P ×φ (SO(n)× SO(2)) ∼= P ×δ (SO(n)× SO(2)

Part 1 then follows by changing fiber to FR.
Similarly in the case of FC, using the extension by SU(n)×SO(2) instead of SO(n)×

SO(2) and the fact that the bundle P×Lθ
SU(n) is trivial as a principal SU(n)-bundle

if n ≥ 2, we can prove Part 2.
When g − 1 is even, the above argument also works for the principal U(1)-bundle

P ′ of Euler class g − 1 and we obtain the result in Part 3 and 4. �
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Remark 9.5. The second Stiefel-Whitney class is not enough to classify SO(2)-bundles,
hence our lemma does not apply to the case n = 2, K = R. In this case, the bundleMR

is the disjoint union of two circle bundles one of them isomorphic to the unit tangent
bundle of S, and the other isomorphic to the unit circle bundle of the tricanonical
bundle K3.

We saw that the bundles SUK→S are non-trivial when considered as bundles with
the structure group SO(n)×SO(2), or SU(n)×SO(2), because they have Euler class
g − 1 with reference to the second factor. A very natural question is whether these
bundles become trivial when the structure group is extended to a larger group. This
would imply that the total space of the bundle is a product of S by the fiber. We can
prove this in a special case.

Theorem 9.6. If the genus g of S is odd, and n = 3, then SUR
∼= SVR ∼= S × SFR.

Proof. We have an explicit identification between SO(3) and SFR where the first
column of the matrix gives the vector v, and the second column gives the vector w.

The group SO(3) × SO(2) embeds into SO(3) × SO(3) by the homomorphism i
with image SO(3)× diag(SO(2), 1) and the action of SO(3)× SO(2) on SFR extends
to an action of SO(3)× SO(3) on SFR

∼= SO(3) as

(34) (SO(3) × SO(3))× SO(3) ∋ (A,B) · C 7−→ ACB−1 ∈ SO(3) .

Recall P ′ is a U(1)-bundle of Euler class g − 1. Decompose the homomorphism
i◦φ : U(1) → SO(3)×SO(3) into (ψ1, ψ2), the corresponding principal SO(3)×SO(3)-
bundle

P ′ ×i◦φ (SO(3) × SO(3)) = (P ′ ×ψ1 SO(3))×S (P ′ ×ψ2 SO(3))

= (S × SO(3))×S (S × SO(3))

is trivial since P ×ψi
SO(3)(i = 1, 2) is trivial as in Lemma 9.4. Hence the bundle SUR

is also trivial by changing fiber to SFR by the action of SO(3)× SO(3) on SFR. �

10. Description of SMK and MK

10.1. Description of SFR and FR. We have natural maps from the spaces SFR and
FR to the oriented Grassmannian Gr+(2,Rn):

SFR ∋ [(v,w)]S → Span(v,w) ∈ Gr+(2,Rn) ,

FR ∋ [(v,w)]P → Span(v,w) ∈ Gr+(2,Rn) .

In this way we can see the spaces SFR, FR as circle bundles over the oriented Grass-
mannian: SFR is the unit circle bundle associated to the tautological vector bundle
over Gr+(2,Rn) and FR is the projectivized tautological vector bundle.

Let’s see more explicitly the topology of these spaces in some special cases.

• For n = 1, SFR = FR = Gr+(2,R) = ∅.
• For n = 2, SFR and FR are both the disjoint union of two circles, and
Gr+(2,R2) is two points.

• For n = 3, SFR = RP
3 and FR is the Lens space L(4, 1) (see [25]). From this

we also see that π1(SFR) = Z2 and π1(FR) = Z4. In this case, Gr+(2,R3) = S
2.

• For n ≥ 4, π1(SFR) = 0, this follows from the long exact sequence of the
fibration of T 1

S
n−1. Hence, in this case, SFR is the universal covering of FR,

and π1(F
n
R
) = Z2. For n ≥ 3, π1(Gr+(2,Rn)) = 0.

• For n = 4, SFR = S
2×S

3, FR = S
2×RP

3 because S3 = SU(2) and RP
3 = SO(3)

are Lie groups. Gr+(2,R4) = S
2 × S

2.
• For n = 8, SFR = S

6 × S
7 and FR = S

6 × RP
7, because S

7 and RP
7 are

parallelizable.
• For all n 6= 2, 4, 8, the unit tangent bundles are non-trivial.
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10.2. Description of SFC and FC. As before, we can also see SFC as the unit
tautological circle bundle over the oriented Grassmannian Gr+(2,R2n):

SFC ∋ [(v,w)]S → SpanR(v,w) ∈ Gr+(2,R2n) .

From the following lemma, the space FC is a sphere bundle over CPn−1.

Lemma 10.1. The space FC is diffeomorphic to the total space of the sphere bundle

S
2n−2 → S(O ⊕ T ) → CP

n−1

where O is a trivial real line bundle over CP
n−1 and T = TCPn−1 is the tangent

bundle.

Proof. The map SFC→S
2n−1 is U(1)-equivariant, hence it induces a map between the

quotients:
FC ∋ [(v,w)]P → [v]P ∈ CP

n−1 .

This map is a submersion between compact spaces, hence by Ehresmann’s theorem it
is a fiber bundle over CP

n−1 with fiber S
2n−2. We have the following commutative

diagram
SFC → S

2n−1

↓ ↓
FC → CP

n−1,

where the map S
2n−1→CP

n−1 is the Hopf fibration. This diagram shows that the
map FC→CP

n−1 is a bundle whose pull-back by the Hopf fibration is T 1
S
2n−1. The

fibers of the Hopf fibration give a 1-dimensional orientable foliation of the sphere
S
2n−1. By choosing unit vectors parallel to the fibers, and hyperplanes orthogonal

to these vectors, we define a decomposition of the tangent bundle to the sphere as
TS2n−1 = O⊕O⊥, where the line bundle O is the kernel of the differential of the Hopf
fibration. This decomposition can be seen explicitly in the following way.

TS2n−1 =
{
(v,w) ∈ C

n × C
n | |v|2 = 1,Re(〈v,w〉) = 0

}

O =
{
(v,w) ∈ C

n × C
n | |v|2 = 1, w ∈ R(iv)

}

O⊥ =
{
(v,w) ∈ C

n × C
n | |v|2 = 1, 〈v,w〉 = 0

}

We see from the formula that O⊥/U(1) is the tangent bundle TCPn−1, and O⊥

with the pull-back of the tangent bundle TCPn−1. Hence the bundle FC→CP
n−1 is

isomorphic to the sphere bundle S(O ⊕ TCPn−1). �

Corollary 10.2. When n = 2, the space FC is diffeomorphic to S
2 × S

2.

Proof. CP
1 can be embedded in R

3 with a trivial normal bundle, hence O ⊕ T is the
restriction to CP

1 of the tangent bundle of R3, which is trivial. �

For n = 1, FC is two points. For n = 2, we saw that FC is the trivial bundle S2×S
2.

For n = 3 and n ≥ 5, the S
2n−2-bundle FC→CP

n−1 is necessarily non-trivial, because
its pull-back by the Hopf fibration is T 1

S
2n−1, which is non-trivial. For n = 4 we don’t

know whether the S
6-bundle FC→CP

n−1 is trivial or not.

10.3. Circle bundles over a product. The space FC can also be seen as a tauto-
logical space over a parameter space similar to a Grassmannian. To do this we notice
that U(1) also acts on the real Grassmannian Gr+(2,R2n) by

U(1) ×Gr+(2,R2n) ∋ (eiθ,SpanR(v,w)) → SpanR(e
iθv, eiθw) ∈ Gr+(2,R2n) ,

where the multiplication by eiθ is defined by an identification R
2n ≃ C

n. We need to
remark that the map is well defined because the subspace SpanR(e

iθv, eiθw) does not
depend on the choice of a basis v,w of SpanR(v,w).
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The quotient of the oriented Grassmannian by this action has a geometric inter-
pretation as the Grassmannian of projective oriented circles, the parameter space of
(possibly degenerate) oriented circles in CP

n−1. A circle in CP
1 is the image of RP1

by a Möbius transformation (an element of PGL(2,C)). We define a circle in CP
n−1

as a circle contained in some complex projective line in CP
n−1. The space of circles is

not compact, because a sequence of circles with smaller and smaller radius does not
converge to a circle, but it has a subsequence converging to a point. So we will consider
points of CPn−1 as degenerate circles. Oriented circles are circles with a privileged
direction of travel. Oriented degenerate circles are points with a sign (+ or −). This
makes sense, because a “very small” circle has an interior and an exterior, and the
natural orientation of CP1, when seen from the interior, makes the direction of travel
positive or negative. It is easy to see that the space of (possibly degenerate) oriented
circles in CP

n−1 is parametrized by

Circ+(CPn−1) = Gr+(2,R2n)/U(1)

since the image in CP
n−1 if every real 2-plane is a circle, or a point if the plane happens

to be a complex line.
The space Circ+(CPn−1) is not a manifold, but in the next proposition we will see

that it is a manifold with conical singularities (see Baas [4], where he reports Sullivan’s
definition of manifold with conical singularities).

Proposition 10.3. The open subset of Circ+(CPn−1) consisting of non-degenerate
oriented circles is a manifold. The subset of degenerate oriented circles is homeomor-
phic to the disjoint union of two copies of CPn−1, and every degenerate circle has a
neighborhood in Circ+(CPn−1) homeomorphic to C

n−1 × C(CPn−2), where C(CPn−2)
is the cone over CP

n−2.

Proof. The U(1)-action is proper because the group is compact. Moreover the action is
free on the open subset of the real 2-planes which are not complex, hence the quotient
of this subset if a manifold.

To understand the second statement, we use the description of the oriented Grass-
mannian by charts: for every complex subspace V of complex dimension n−1, consider
the open subset UV of all the real 2-planes transverse to V . The set UV has two con-
nected components U1

V , U2
V , containing the same 2-planes with different orientations.

A choice of a transverse complex line W ∈ U1
V gives a diffeomorphism from the space

of R-linear applications HomR(W,V ) to U1
V , sending every R-linear map to its graph.

We will write A ∈ HomR(W,V ) as A = Aℓ + Aaℓ, where Aℓ(v) =
1
2(A(v) − iA(iv)) is

a C-linear map and Aaℓ(v) =
1
2 (A(v) + iA(iv)) is a C-anti linear map. Choosing an

element e1 ∈W , we can give a more explicit chart using the identification:

HomR(W,V ) ∋ A → (Aℓ(e1), Aaℓ(e1)) ∈ C
n−1 × C

n−1 .

In these coordinates, it is easy to write the U(1)-action, it acts by:

U(1)× (Cn−1 × C
n−1)(eiθ, (v,w)) → (v, eiθw) ∈ (Cn−1 × C

n−1) .

Degenerate circles are the points where Aaℓ = 0, and we can see that they have a
neighborhood homeomorphic to U1

V /U(1) = C
n−1 × C(CPn−2). �

The proof of the previous theorem also shows how to describe Circ+(CPn−1) with
charts analog to the charts for ordinary Grassmannians, except that the charts take
values in the singular space C

n−1 × C(CPn−2).
The Grassmannian of projective circles has a tautological space:

{(p, c) ∈ CP
n−1 × Circ+(CPn−1) | p ∈ c} → Circ+(CPn−1) .

When restricted to the open subset of non-degenerate circles, this map is a circle
bundle. Over a degenerate circle there is only one point.
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The space FC has a map associating to a point [(v,w)]P ∈ FC the circle image of
SpanR(v,w) in Circ+(CPn−1). With this map FC→Circ+(CPn−1), FC is precisely the
tautological space described above.

In general, we don’t know whether the spaces SUR, UR, SUC, UC are homeomorphic
to products, but we can prove a weaker statement that they all have a codimension 1
quotient which is a product.

Theorem 10.4. There are maps

pSUR
: SUR → S ×Gr+(2,Rn) ,

pUR
: UR → S ×Gr+(2,Rn) ,

pSUC
: SUC → S ×Gr+(2,R2n) ,

pUC
: UC → S ×Circ+(CPn−1) ,

where the maps pSUR
, pUR

, pSUC
are circle bundles over S × Gr+(2,Rn) such that for

every point x in the Grassmannian, the inverse image of S × {x} is the unit tangent
bundle of the surface, and for every point point z ∈ S, the inverse image of z times
the Grassmannian is the space SFR, FR or SFC. The map pUC

is a circle bundle only
over the open dense subset of non-degenerate circles, while over the degenerate circles
the fiber is just one point.

Proof. We have seen in Proposition 9.4 that as bundles with structure group O(n)×
SO(2) or U(n)×SO(2), SUK, UK are isomorphic to SVK, VK. The latter bundles have a
well defined map to the oriented Grassmannian, or to the Grassmannian of projective
oriented circles. These maps can be defined in every bundle chart, and since the
structure group SO(2) does not change the map to the relevant Grassmannian, the
map is well defined globally. �
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